Skip to main content
Log in

Dielectric parameterization of raman lineshapes for GaP with a plasma of charge carriers

  • Invited Paper
  • Published:
Applied physics Aims and scope Submit manuscript

Abstract

We have studied the Raman lineshapes of several samples of GaP with appreciable carrier concentrations. There is no feature identifiable as a plasma resonance, but there are pronounced effects of interaction with the LO phonon resonance. For analysis we have developed a model along lines laid down by Barker and Loudon, employing Nyquist relations to calculate infrared fluctuations which scatter light. We introduce a response matrix α(ω) withseveral resonances; and we uncover some points which seem to be new, for coupled-mode scattering systems in general. In the GaP-plasma problem the data do not necessitate inclusion of the scattering amplitude from the plasma; we ascribe this to large plasma damping rates (ωτ≲1). This provides an account for the lack of any apparent plasma resonance in the scattering and for the modified appearance of the LO phonon, relative to the pure crystal. We emphasize that the following parameters suffice: Lorentz parameters measured in linear infrared experiments, the nonlinear parameterC from a visible-infrared mixing experiment, and the plasma frequency and damping fit to each sample.

Beyond treatment of the plasma problem, the theory bears more generally on the conditions under which an LO Raman lineshape measures locally the shape of 〈E 2ω. Also it bears upon the analysis of polariton linewidths to infer the variation of the phonon damping Γ(ω).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. B. Varga: Phys. Rev.137, A 1896 (1965)

    Article  ADS  Google Scholar 

  2. A. Mooradian, G. B. Wright: Phys. Rev. Letters16, 999 (1966)

    Article  ADS  Google Scholar 

  3. J. F. Scott, T. C. Damen, J. Ruvalds, A. Zawadowski: Phys. Rev. B3, 1295 (1971)

    Article  ADS  Google Scholar 

  4. F. A. Blum, A. Mooradian: Light scattering from plasmons in InSb,Proc. 10th International Conference on Physics of Semi-Conductors, F. P. Keller,ed., published by U.S. Atomic Energy Commission, Division of Technical Information, p. 755

  5. D. T. Hon, S. P. S. Porto, W. G. Spitzer, W. L. Faust: J. Opt. Soc. Am.61, 679A (1971); D. T. Hon, W. L. Faust, S. P. S. Porto: Bull. Am. Phys. Soc. II17, 125 (1972)

    Google Scholar 

  6. M. V. Klein, B. N. Ganguly, P. J. Colwell: Phys. Rev. B6, 2380 (1972)

    Article  ADS  Google Scholar 

  7. A. Moordian, A. L. McWhorter: Phys. Rev. Letters19, 849 (1967)

    Article  ADS  Google Scholar 

  8. The physical model and the mathematical analysis are similar to those described by A. S. Barker, Jr., R. Loudon: Rev. Mod. Phys.44, 18 (1972)

    Article  ADS  Google Scholar 

  9. This is discussed in Ref. [8], Section 2 E

  10. L. D. Landau, E. M. Lifshitz:Statistical Physics (Pergamon Press, London, 1969), 2nd ed., Chap. XII, Sects. 123, 124

    Google Scholar 

  11. M. Born, K. Huang:Dynamical Theory of Crystal Lattices (Oxford, London 1954), 1st ed.

  12. W. L. Faust, C. H. Henry: Phys. Rev. Letters17, 1265 (1966); W. L. Faust, C. H. Henry, R. H. Eick: Phys. Rev.173, 781 (1968)

    Article  ADS  Google Scholar 

  13. C. H. Henry, J. J. Hopfield: Phys. Rev. Letters15, 964 (1965)

    Article  ADS  Google Scholar 

  14. S. P. S. Porto, B. Tell, T. C. Damen: Phys. Rev. Letters16, 450 (1966)

    Article  ADS  Google Scholar 

  15. A. S. Barker, Jr.: Phys. Rev.165, 917 (1968)

    Article  ADS  Google Scholar 

  16. H. J. Benson, D. L. Mills: Phys. Rev. B1, 4835 (1970)

    Article  ADS  Google Scholar 

  17. S. Ushioda, J. D. McMullen: Solid State Comm.11, 299 (1972)

    Article  Google Scholar 

  18. D. F. Nelson, E. H. Turner: Appl. Phys.39, 3337 (1968)

    Article  Google Scholar 

  19. W. L. Bond: J. Appl. Phys.36, 1674 (1965)

    Article  Google Scholar 

  20. The ratio of the area under Im {LO} to that under Im {TO} is 0.1925. In the approximation\(\Gamma<< \Omega \sim \omega _T\), it may be shown analytically that for equal displacements from the respective resonant frequenciesω L andω T we have the ratio Im {LO}=(Ω 2/ω 2 T ) Im {TO}=0.2118 Im {TO}; so the integrals are in this ratio, and the linewidths are equal

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the National Science Foundation Grant No. GH 32401. It is based on a major segment of the thesis of D.T. Hon, submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Physics) in the Faculty of the Graduate School of the University of Southern California.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hon, D.T., Faust, W.L. Dielectric parameterization of raman lineshapes for GaP with a plasma of charge carriers. Appl. Phys. 1, 241–256 (1973). https://doi.org/10.1007/BF00889771

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00889771

Index Headings

Navigation