Skip to main content
Log in

Conductivity relaxation in glass: Compositional contributions to non-exponentiality

  • Solids and Materials
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

That ionic conductivity in glass is a non-exponential process and has been known for many years. The amorphous structure of glass and hence a distribution of cation sites has often been thought to be the cause for the non-exponentiality. Almost completely unresearched, however, has been the effect of glass composition on the nature of the relaxation process. In this paper, we review the observations that have been made of the relationships between glass composition and the non-exponential character of the conductivity relaxation as well combine our recent wide composition range studies of sodium aluminoborate and lithium phosphate glasses to delineate the major features of the correlation. By examining glass compositions ranging from 0.02 to 60 mole% alkalioxide, it is observed that the rapid development of non-exponentiality within 1% Na2O is accompanied by a similar rapid decrease in the average cation-cation separation distance, this being calculated using the composition and density. Other quantities such as the dc conductivity or activation energy are observed to vary too slowly with composition to produce a linear correlation with the extent of non-exponentiality as monitored in theβ parameter of the stretched exponentialkww function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Pradel, M. Ribes: Materials Chemistry and Physics (in press)

  2. C.A. Angell: Solid State Ionics18/19, 72 (1985)

    Google Scholar 

  3. H.L. Tuller, D.P. Button, D.R. Uhlmann: J. Non Cryst. Solids40, 93 (1983)

    Google Scholar 

  4. M.D. Ingram: Phys. Chem. Glasses28, 215 (1987)

    Google Scholar 

  5. R.J. Grant, M.D. Ingram, L.D.S. Turner, C.A. Vincent: J. Phys. Chem.82, 2838 (1978)

    Google Scholar 

  6. J. Wong, C.A. Angell:Glass: Structure by Spectroscopy (Dekker, New York 1976) Chap. 11

    Google Scholar 

  7. D.P. Almond, G.K. Duncan, A.R. West: J. Non-Cryst. Solids74, 285 (1985)

    Google Scholar 

  8. P.B. Macedo, C.T. Moynihan, R. Bose: Phys. Chem. Glasses13, 171 (1972)

    Google Scholar 

  9. C.T. Moynihan, L.P. Boesch, N.L. Laberge: Phys. Chem. Glasses14, 122 (1986)

    Google Scholar 

  10. S.W. Martin, C.A. Angell: J. Non-Cryst. Solids83, 185 (1986)

    Google Scholar 

  11. K.L. Ngai, J.N. Mundy, H. Jain, O. Kanert, G. Balzer-Jollenbeck: To be published

  12. G. Williams, D.C. Watts: Trans. Faraday Soc.66, 80 (1970)

    Google Scholar 

  13. G. Williams, D.C. Watts, S.B. Dev, A.M. North: Trans. Faraday Soc.67, 1323 (1971)

    Google Scholar 

  14. G. Williams, P.J. Hains: Faraday Symp. Chem. Soc.6, 14 (1972)

    Google Scholar 

  15. K.L. Ngai: Solid State Ionics5, 27 (1981)

    Google Scholar 

  16. S.W. Martin, C.A. Angell: J. Non-Cryst. Solids66, 429 (1984)

    Google Scholar 

  17. S.W. Martin, C.A. Angell: J. Am. Ceram. Soc.67, C-148 (1984)

    Google Scholar 

  18. S.W. Martin, H. Patel: To be published

  19. C.A. Angell, S.W. Martin: Mater. Res. Bull. (submitted)

  20. S.W. Martin: Solid State Ionics18/19, 472 (1985)

    Google Scholar 

  21. S.W. Martin: J. Am. Ceram. Soc.71, 438 (1988)

    Google Scholar 

  22. See for example, K. Ngai: Solid State Ionics5, 27 (1981)

    Google Scholar 

  23. P.B. Elterman, C.J. Simmons, J.H. Simmons: J. Am. Ceram. Soc.62, 158 (1979)

    Google Scholar 

  24. P. Debye:Polar Molecules (Chemical Catalogue Co., New York 1929)

    Google Scholar 

  25. J. Zhong, P.J. Bray: In Proceedings of International Conference on the Physics and Chemistry of Glasses, N.Y. Alfred, 1985, J. Non-Cryst. Solids84, 17 (1986)

    Google Scholar 

  26. V. Provenzano, L.P. Boesch, V. Volterra, C.T. Moynihan, P.B. Macedo: J. Am. Ceramic Soc.55, 492 (1972)

    Google Scholar 

  27. K.L. Ngai, R.W. Rendel, H. Jain: Phys. Rev. B30, 2133 (1984)

    Google Scholar 

  28. S.W. Martin, D. Torgesen: To be published

  29. G.W. Morey, H.E. Merwin: J. Opt. Soc. Am.22, 632 (1932)

    Google Scholar 

  30. F. Winks, W.E.S. Turner: J. Soc. Glass Tech.15, 58 (1931)

    Google Scholar 

  31. A.M. Efimov, E.K. Mazurina, V.A. Kharyuzov, M.V. Prodskuryakov: Fiz. Khim. Stekla2, 151 (1976)

    Google Scholar 

  32. J. Sakka, K. Kamiya: Non-Cryst. Solids49, 103 (1982)

    Google Scholar 

  33. E.F. Gooding, W.E.S. Turner: J. Soc. Glass Tech.18, 32 (1934)

    Google Scholar 

  34. M. Foex: C. R. Acad. Sci.208, 278 (1939)

    Google Scholar 

  35. A. Karki, S. Feller, H.P. Lim, J. Stark, C. Sanchez, M. Shibata: J. Non-Cryst. Solids92, 11 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, S.W. Conductivity relaxation in glass: Compositional contributions to non-exponentiality. Appl. Phys. A 49, 239–247 (1989). https://doi.org/10.1007/BF00616850

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00616850

PACS

Navigation