Skip to main content
Log in

An experimental study of gas-liquid slug flow

  • Originals
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Experimental measurements were carried out for upward gas-liquid slug flow in a 50.8 mm diameter pipe. Parallel conductance wires were used to distinguish the Taylor bubbles and liquid slugs and to determine translation velocities and lengths, an electrochemical probe provided the magnitude and direction of the wall shear stress and a radio-frequency local probe was used for the axial and radial distribution of voidage in the liquid slugs. Data are reported over wide range of flow conditions covering slug flow and into the churn flow pattern. Comparison with the Fernandes model predictions are presented. Numerical simulation of slug flow provided information on the structure of flow in a liquid slug and, in particular, on the process of mixing behind a Taylor bubble.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D :

pipe diameter

f :

Taylor bubble frequency

F Gi (x) :

gas existence function for i-th liquid slug

g :

gravitational acceleration

l A :

distance for the wall shear stress reversal in a liquid slug

l B :

distance for the wall shear stress reversal in a Taylor bubble region

l LS :

length of a liquid slug

l TB :

length of a Taylor bubble

n :

number of samples in an ensemble

u :

axial velocity

U M :

superficial mixture velocity (U SG + USL)

U N :

translation velocity of the leading Taylor bubble

U NLS :

average translation velocity of liquid slugs

U NTB :

average translation velocity of Taylor bubbles

U OT :

overtaking velocity of the trailing Taylor bubble

U SG :

superficial gas velocity

U SL :

superficial liquid velocity

v :

radial velocity

w (y) :

velocity profile at the inlet to a liquid slug

x :

axial coordinate

y :

radial coordinate

α :

void fraction

α LS :

void fraction in a liquid slug

β :

β=〈l TB 〉/(〈lTB〉 + 〈lLS〉)

ρ :

density

σ :

surface tension

τ ω :

shear stress

φ :

saturation ratio, φ=τ w /ρ g h

〈 〉:

ensemble average

References

  • Akagawa, K.; Sagaguchi, T. 1966: Fluctuations of void ratio in two-phase flow. Bull. JSME, 9, 104–110

    Google Scholar 

  • Brauner, N.; Barnea, D. 1986: Slug/churn transition in upward gas-liquid flow. Chem. Eng. Sci. 41, 159–163

    Google Scholar 

  • Cognet, G.; Lebouche, M.; Souhar, M. 1984: Wall shear measurements by electrochemical probe for gas-liquid two-phase flow in vertical duct. AIChE J. 30, 338–341

    Google Scholar 

  • Davies, R. M.; Taylor, G. 1950: The mechanics of large bubbles rising through extended liquids and through liquids in tubes. Proc. Royal Soc. London, Ser A. 200, 375–390

    Google Scholar 

  • Dukler, A. E.; Taitel, Y. 1986: Flow pattern transitions in gas-liquid systems: measurement and modelling. In: Adv. Multiphase Flow, (eds. Zuber, N.; Hewitt, G. F.; Delhaye, J. M.) Vol. 2, pp. 1–88. New York: McGraw-Hill

    Google Scholar 

  • Dukler, A. E.; Moalem-Maron, D.; Brauner, N. 1987: A physical model for predicting the minimum stable slug length. Chem. Eng. Sci. (in press)

  • Dumitrescu, D. T. 1943: Strömung an einer Luftblase im senkrechten Rohr. Z. Angew. Math. Mech. 23, 139–149

    Google Scholar 

  • Fernandes, R. D.; Semiat, R.; Dukler, A. E. 1983: A hydrodynamic model for gas-liquid slug flow in vertical tubes. AIChE J. 29, 981–989

    Google Scholar 

  • Hanratty, T. J.; Campbell, J. A. 1983: Measurement of wall shear stress. In: Fluid mechanics measurements (ed. Goldstein, R. J.) pp. 559–615. Washington: Hemisphere

    Google Scholar 

  • Herringe, R. A.; Davis, M. R. 1976: Structural development of gas-liquid mixture flows. J. Fluid Mech. 73, 97–114

    Google Scholar 

  • Kalada, M. I. 1977: Application of anemometry in two phase flow for local measurements and the study of flow behavior in the entrance region of a long vertical pipe. M.S. Thesis, Univ. of Houston

  • Mao, Z. S. 1988: An investigation of two phase gas-liquid slug flow. Ph.D. Diss., Univ. of Houston

  • Mao, Z.-S.; Dukler, A. E. 1985: Rise velocity of a taylor bubble in a train of such bubbles in a flowing liquid. Chem. Eng. Sci. 40, 2158–2160

    Google Scholar 

  • Mao, Z.-S.; Dukler, A. E. 1989a: The motion of taylor bubbles in vertical tubes. I. A numerical simulation for the shape and rise velocity of taylor bubbles in stagnant and flowing liquid. J. Comp. Phys. (in press)

  • Mao, Z.-S.; Dukler, A. E. 1989b: The motion of taylor bubbles in vertical tubes. II. Experimental data and simulations for laminar and turbulent flow. Chem. Eng. Sci. (in press)

  • Nakoryakov, V. E.; Kashinsky, O. N.; Kozmenko, B. K. 1983: Electrochemical method for measuring turbulent characteristics of gas-liquid flows. In: measuring techniques in gas-liquid twophase flows. (eds. Delhaye, J. M.; Cognet, G.) pp. 695–721. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Nakoryakov, V. E.; Kashinsky, O. N.; Kozmenko, B. K. 1986: Experimental study of gas-liquid slug flow in a small-diameter vertical tube. Int. J. multiphase flow 12, 337–355

    Google Scholar 

  • Orell, A.; Rembrand, R. 1986: A model for gas-liquid slug flow in a vertical tube. Ind. Eng. Chem. Fundam. 25, 196–206

    Google Scholar 

  • Sutey, A. M.; Knudsen, J. G. 1967: Effect of dissolved oxygen on the redox method for measurement of mass transfer coefficient. I&EC Fundam 6, 132–141

    Google Scholar 

  • Vigneaux, P.; Chenais, P.; Hulin, J. P. 1988: Liquid-liquid flows in an inclined pipe. AIChE J. 34, 781–789

    Google Scholar 

  • Zabaras, G. J. 1985: Studies of vertical annular gas-liquid flows. Ph.D. Diss., Univ. of Houston

  • Zabaras, G. J.; Dukler, A. E.; Maron, D. 1986: Vertical upward gas-liquid annular flow. AIChE J. 32, 829–843

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, ZS., Dukler, A.E. An experimental study of gas-liquid slug flow. Experiments in Fluids 8, 169–182 (1989). https://doi.org/10.1007/BF00195792

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00195792

Keywords

Navigation