Skip to main content
Log in

Photoperiodic determination of insect development and diapause

III. Effects of nondiel photoperiods

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

The Photoperiodic Determination Model proposed earlier (I, II) is further elaborated, and its applicability to nondiel photoperiods tested. Model-generated predictions of diapause incidences were in good agreement with observed incidences among larvae of the European corn borer,Ostrinia nubilalis, reared under photoperiods from 15 to 50 hrs duration with scotophases of from 9 to 18 hrs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adkisson, P. L.: Internal clocks and insect diapause. Science154, 234–241 (1966)

    Google Scholar 

  • Beck, S. D.: Photoperiodic induction of diapause in an insect. Biol. Bull.122, 1–12 (1962)

    Google Scholar 

  • Beck, S. D.: Physiology and ecology of photoperiodism. Bull. entomol. Soc. Amer.9, 8–16 (1963)

    Google Scholar 

  • Beck, S. D.: Time-measurement in insect photoperiodism. Amer. Natur.98, 329–346 (1964)

    Google Scholar 

  • Beck, S. D.: Environmental photoperiod and the programming of insect development. In: Evolution and environment (E. T. Drake, ed.), p. 279–296. New Haven and London: Yale University Press 1968a

    Google Scholar 

  • Beck, S. D.: Insect photoperiodism, 288 pp. New York and London: Academic Press 1968b

    Google Scholar 

  • Beck, S. D.: Photoperiodic determination of insect development and diapause. I. Oscillators, hourglasses, and a determination model. J. comp. Physiol.90, 275–295 (1974a)

    Google Scholar 

  • Beck, S. D.: Photoperiodic determination of insect development and diapause. II. The determination gate in a theoretical model. J. comp. Physiol.90, 297–310 (1974b)

    Google Scholar 

  • Beck, S. D., Alexander, N.: Chemically and photoperiodically induced diapause development in the European corn borer,Ostrinia nubilalis. Biol. Bull.126, 175–184 (1964)

    Google Scholar 

  • Beck, S. D., Hanec, W.: Diapause in the European corn borer,Pyrausta nubilalis. J. Insect Physiol.4, 304–318 (1960)

    Google Scholar 

  • Brady, J.: The physiology of insect circadian rhythms. Adv. Insect Physiol.10, 1–115 (1974)

    Google Scholar 

  • Claret, J.: La levée photopériodique de la diapause nymphale dePieris brassicae (L). C. R. Acad. Sci. (Paris)277, 733–735 (1973)

    Google Scholar 

  • Danilevskii, A. S.: Photoperiodism and seasonal development of insects. 283 pp. London: Oliver and Boyd 1965

    Google Scholar 

  • Danilevskii, A. S., Goryshin, N. I., Tyshchenko, V. P.: Biological rhythms in terrestrial arthropods. Ann. Rev. Entomol.15, 201–244 (1970)

    Google Scholar 

  • Goryshin, N. I., Tyshchenko, V. P.: On the accumulation of the photoperiodic information during the diapause induction inBaranthra brassicae L. [in Russian]. Entomol. Rev.52, 249–255 (1973)

    Google Scholar 

  • Hamner, W.: Hour-glass dusk and rhythmic dawn timers control diapause in the codling moth. J. Insect Physiol.15, 1499–1504 (1969)

    Google Scholar 

  • Lees, A. D.: The role of photoperiod and temperature in the determination of parthenogenetic and sexual forms in the aphidMegoura viciae Buckton. II. The operation of the “interval timer” in young clones. J. Insect Physiol.4, 154–175 (1960)

    Google Scholar 

  • Lees, A. D.: Photoperiodism in insects. Photophysiology4, 47–137 (1968)

    Google Scholar 

  • Pittendrigh, C. S.: The circadian oscillation inDrosophila pupae: A model for the photoperiodic clock. Z. Pflanzenphysiol.54, 275–307 (1966)

    Google Scholar 

  • Saunders, D. S.: Circadian clock in insect photoperiodism. Science168, 601–603 (1970)

    Google Scholar 

  • Saunders, D. S.: The temperature-compensated photoperiodic clock ‘programming’ development and pupal diapause in the flesh-fly,Sarcophaga argyrostoma. J. Insect Physiol.17, 801–812 (1971)

    Google Scholar 

  • Saunders, D. S.: Circadian control of larval growth rate inSarcophaga argyrostoma. Proc. nat. Acad. Sci. (Wash.)69, 2738–2740 (1972)

    Google Scholar 

  • Saunders, D. S.: The photoperiodic clock in the fleshfly,Sarcophaga argyrostoma. J. Insect Physiol.19, 1941–1954 (1973)

    Google Scholar 

  • Saunders, D. S.: Evidence for ‘dawn’ and ‘dusk’ oscillators in theNasonia photoperiodic clock. J. Insect Physiol.20, 77–88 (1974)

    Google Scholar 

  • Truman, J. W.: Hour-glass behavior of the circadian clock controlling eclosion of the silkwormAntheraea pernyi. Proc. nat. Acad. Sci. (Wash.)68, 595–599 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by the College of Agricultural and Life Sciences, University of Wisconsin, and by a research grant (GM-07557) from the National Institutes of Health.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck, S.D. Photoperiodic determination of insect development and diapause. J. Comp. Physiol. 103, 227–245 (1975). https://doi.org/10.1007/BF00617123

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00617123

Keywords

Navigation