Skip to main content
Log in

Opsin localization and chromophore retinoids identified within the basal brain of the lizard Anolis carolinensis

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Since the beginning of this century evidence has accumulated which demonstrates that non-mammalian vertebrates possess photoreceptors situated deep within the brain. While many attempts have been made to localize these sensory cells, studies have either failed or been inconclusive. In this report we have used several experimental approaches to localize the deep brain photoreceptors of the lizard Anolis carolinensis. Using 3 antibodies that bind vertebrate cone opsins, we have immunolabelled cerebrospinal fluid (CSF)-contacting neurons located at the ventricular border within the nucleus ventromedialis of the septum. Western blot analysis indicates that these antibodies recognized a single 40 kD protein in ocular, anterior brain, and pineal extracts. Immunoblots of rodent brain did not show a similar protein band. We have also identified specific retinoids associated with phototransduction (11-cis and all-trans-3,4-didehydroretinaldehyde) within anterior brain extracts. This combined data provides the most detailed analysis of deep brain photoreceptors in any vertebrate. Consequently, we feel Anolis provides an excellent model to study this unexplored sensory system of the vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CSF:

contacting neurons cerebrospinal fluid-contacting neurons

HPLC:

high performance liquid chromatography

L:D:

light:dark cycle

References

  • Barnstable CJ (1980) Monoclonal antibodies which recognize different cell types in the rat retina. Nature 286:231–235

    Google Scholar 

  • Benoit J (1935a) Le rôle des yeux dans l'action stimulante de la lumière sur le developpement testiculaire chez le canard. CR Soc Biol (Paris) 118:669–671

    Google Scholar 

  • Benoit J (1935b) Stimulation par la lumière artificielle du développement testiculaire chez des canards aveugles par section du nerf optique. CR Soc Biol (Paris) 120:133–136

    Google Scholar 

  • Benoit J, Ott L (1944) External and internal factors in sexual activity. Effect of irradiation with different wave-lengths on the mechanisms of photostimulation of the hypophysis and on testicular growth in the immature duck. Yale J Biol Med 17:27–46

    Google Scholar 

  • Burnette WN (1981) “Western blotting”: Electrophoretic transfer of proteins from sodium dodecyl sulfate polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112:195–203

    Google Scholar 

  • Cadusseau J, Galand G (1980) Electrophysiological evidence for white light sensitivity of the encephalon in eyeless and pinealectomized frogs. Exp Brain Res 40:339–341

    Google Scholar 

  • Cadusseau J, Galand G (1981) Electrophysiological recordings of an extraocular and extrapineal photoreceptor in the frog encephalon. Brain Res 219:439–444

    Google Scholar 

  • DeGrip WJ, Bovee-Geurts PHM (1979) Synthesis and properties of alkylglucose with mild detergent action: Improved synthesis and purification of β-1-undecylglucose and β-1-dodecylmaltose. Chem Phys Lip 23:321–335

    Google Scholar 

  • Distel H (1976) Behavior and electrical brain stimulation in the green iguana, Iguana iguana. Schematic brain atlas and stimulation device. Brain Behav Evol 13:421–450

    Google Scholar 

  • Dodt E, Heerd E (1962) Mode of action of pineal nerve fibers in frogs. J Neurophysiol 25:404–429

    Google Scholar 

  • Fager LY, Fager RS (1982) Chromatographic separation of rod and cone pigments from chicken retinae. Methods Enzymol 81:160–166

    Google Scholar 

  • Foster RG, Follett BK (1985) The involvement of a rhodopsin-like photopigment in the photoperiodic response of the Japanese quail. J Comp Physiol A 157:519–528

    Google Scholar 

  • Foster RG, Follett BK, Lythgoe JN (1985) Rhodopsin-like sensitivity of extra-retinal photoreceptors mediating the photoperiodic response in quail. Nature 313:50–52

    Google Scholar 

  • Foster RG, Korf H-G, Schalken JJ (1987) Immunocytochemical markers revealing retinal and pineal but not hypothalamic photoreceptor systems in the Japanese quail. Cell Tissue Res 248:161–167

    Google Scholar 

  • Foster RG, Schalken JJ, Timmers AM, DeGrip WJ (1989a) A comparison of some photoreceptor characteristics in the pineal and retina I. The Japanese quail (Coturnix coturnix). J Comp Physiol A 165:553–563

    Google Scholar 

  • Foster RG, Schalken JJ, Timmers AM, DeGrip WJ (1989b) A comparison of some photoreceptor characteristics in the pineal and retina II. The Djungarian hamster (Phodopus sungorus). J Comp Physiol A 165:565–572

    Google Scholar 

  • Foster RG, Provencio I, Hudson D, Fiske S, DeGrip WJ, Menaker M (1991) Circadian photoreception in the retinally degenerate mouse (rd/rd). J Comp Physiol A 169:39–50

    Google Scholar 

  • Frisch K von (1911) Beiträge zur Physiologie der Pigmentzellen in der Fischhaut. Pflüger's Arch 138:319–387

    Google Scholar 

  • Glass JD, Lauber JK (1981) Sites and action spectra for encephalic photoreceptors in the Japanese quail. Am J Physiol 240:220–228

    Google Scholar 

  • Greenburg N (1982) A forebrain atlas and stereotaxic technique for the lizard, Anolis carolinensis. J Morphol 174:217–236

    Google Scholar 

  • Groenendijk GWT, DeGrip WJ, Daemen FJM (1980) Quantitative determination of retinals with complete retention of their geometric configuration. Biochim Biophys Acta 617:430–438

    Google Scholar 

  • Hicks D, Barnstable CJ (1987) Different rhodopsin monoclonal antibodies reveal different binding patterns on developing and adult rat retina. J Histochem Cytochem 11:1317–1328

    Google Scholar 

  • Hollwich F (1952) Über die Bedeutung des “energetischen Anteiles der Sehbahn” für die Regulation von Stoffwechselabläufen. Münch Med Wochschr 94:1057–1066

    Google Scholar 

  • Homma K, Sakakibara Y (1971) Encephalic photoreceptors and their significance in photoperiodic control of sexual activity in Japanese quail. In: Menaker (ed) Biochronometry. Natl Acad Sci USA, Washington, pp 333–341

    Google Scholar 

  • Homma K, Sakakibara Y, Ohta M (1977) Potential sites and action spectra for encephalic photoreception in the Japanese quail. In: Follett BK (ed) First Int Symp Avian Endocrinol, University College of North Wales, pp 25–26

  • Janssen JJM (1991) The rod visual pigment rhodopsin: in vitro expression and site specific mutagenesis. Ph D Thesis, Dept of Biochemistry, University of Nijmegen

  • Kavaliers M (1980a) Retinal and extraretinal action spectra for the activity rhythms of the Lake Chub, Couesius plumbeus. Behav Neural Biol 30:56–67

    Google Scholar 

  • Kavaliers M (1980b) Circadian rhythm of extraretinal photosensitivity in hatchling alligators, Alligator mississippiensis. Photochem Photobiol 32:67–70

    Google Scholar 

  • Margry RJCF, Jacobs CWM, DeGrip WJ, Daemen FJM (1983) Detergent-induced specificity of an anti-rhodopsin serum for opsin. Micro complement-fixation studies. Biochim Biophys Acta 742:463–470

    Google Scholar 

  • Matsumoto H, Yoshizawa T (1982) Preparation of chicken iodopsin. Methods Enzymol 81:154–160

    Google Scholar 

  • Meissl H, Dodt E (1981) Comparative physiology of pineal photoreceptor organs. In: Oksche A, Pévet (eds) The pineal organ: Photobiology — biochronometry — endocrinology. Elsevier, Amsterdam, pp 61–80

    Google Scholar 

  • Menaker M (1968) Extraretinal light perception in the sparrow I: Entrainment of the biological clock. Proc Natl Acad Sci USA 59:414–421

    Google Scholar 

  • Menaker M (1972) Nonvisual light reception. Sci Am 226:22–29

    Google Scholar 

  • Menaker M, Keatts H (1968) Extraretinal light perception in the sparrow II: Photoperiodic stimulation of testis growth. Proc Natl Acad Sci USA 60:146–151

    Google Scholar 

  • Menaker M, Roberts R, Elliott J, Underwood H (1970) Extraretinal light perception in the sparrow III: The eyes do not perticipate in photoperiodic photoreception. Proc Natl Acad Sci USA 67:320–325

    Google Scholar 

  • Menaker M, Wisner S (1983) Temperature-compensated circadian clock in the pineal of Anolis. Proc Natl Acad Sci USA 80:6119–6121

    Google Scholar 

  • Miller WH, Wolbarsht ML (1962) Neural activity in the parietal eye of a lizard. Science 135:316–317

    Google Scholar 

  • Northcutt RG (1967) Architectonic studies of the telencephalon of Iguana iguana. J Comp Physiol 130:109–148

    Google Scholar 

  • Oishi T, Kato M (1968) Pineal organ as a possible photoreceptor: photoperiodic testicular responses in the Japanese quail. Mem Fac Sci Kyoto Univ 2:12–18

    Google Scholar 

  • Oksche A, Hartwig H-G (1979) Pineal sense organs — components of photoneuroendocrine systems. Prog Brain Res 52:497–507

    Google Scholar 

  • Oliver J, Bayle JD (1976) The involvement of the preoptic-suprachiasmatic region in the photosexual reflex in quail: effects of selective lesions and photic stimulation. J Physiol (Paris) 72:627–637

    Google Scholar 

  • Oliver J, Bayle JD (1982) Brain photoreceptors for the photoinduced testicular response in birds. Experientia 38:1021–1029

    Google Scholar 

  • Oliver J, Herbute S, Bayle JD (1977a) Testicular response to photostimulation by radioluminous implants in the deafferented hypothalamus of quail. J Physiol (Paris) 73:685–691

    Google Scholar 

  • Oliver J, Bouille C, Herbute S, Bayle JD (1977b) Horseradish peroxidase study of intact or deafferented infundibular complex in Coturnix quail. Neuroscience 2:989–996

    Google Scholar 

  • Oliver J, Jallageas M, Bayle JD (1979) Plasma testosterone and LH levels in male quail bearing hypothalamic lesions or radioluminous implants. Neuroendocrinology 28:114–122

    Google Scholar 

  • Oliver J, Jallageas M, Sicard B, Bayle JD (1980) Testicular responses to local photostimulation of the lobus paraolfactorius in quail. J Physiol (Paris) 76:611–616

    Google Scholar 

  • Parker GH (1905) The stimulation of the integumentary nerves of fishes by light. Am J Physiol 14:413–420

    Google Scholar 

  • Provencio I, Foster RG (1993) Characterization of photopigment chromophore type in the pineal of the lizard Anolis carolinensis. Neurosci Letters (submitted)

  • Provencio I, Loew ER, Foster RG (1992) Vitamin A2-based visual pigments in fully terrestrial vertebrates. Vision Res 32:2201–2208

    Google Scholar 

  • Quay WB (1979) The parietal eye-pineal complex. Chapter 5. In: Gans C, Northcutt RG, Ulinski P (eds) Biology of the Reptilia, vol 9, Neurology. Academic Press Inc, pp 245–406

    Google Scholar 

  • Rommel E (1987) Populations of cerebrospinal fluid-contacting neurons immunoreactive to vasoactive intestinal polypeptide in the brain of reptiles. In : Scharrer B, Korf H-W, Hartwig H-G (eds) Functional morphology of neuroendocrine systems : Evolutionary and environmental aspects. Springer, p 83

  • Sacerdote M (1971) Differentiation of ectopic retinal structures in the hypothalamo-hypophysial area in adult crested newt bearing a permanent hypothalamic lesion. Z Anat EntwiGesch 134:49–60

    Google Scholar 

  • Schalken JJ (1987) The visual pigment rhodopsin: immunochemical aspects of induction of experimental autoimmune uveoretinitis. Ph D Thesis, University of Nijmegen

  • Schalken JJ, DeGrip WJ (1986) Enzyme-linked immunosorbent assay for the quantitative determination of the visual pigment rhodopsin in total eye extracts. Exp Eye Res 43:431–439

    Google Scholar 

  • Scharrer E (1928) Die Lichtempfindlichkeit blinder Elritzen. I. Untersuchungen über das Zwischenhirn der Fische. Z Vergl Physiol 7:1–38

    Google Scholar 

  • Scharrer E (1937) Über ein vegetatives optisches System. Klin Wochenschr: 1521–1523

  • Scharrer E (1964) Photo-neuro-endocrine systems: General concepts. Ann NY Acad Sci 117:13–22

    Google Scholar 

  • Sicard B, Oliver J, Bayle JD (1983) Gonadotrophic and photosensitive abilities of the lobus paraolfactorius: electrophysiological study in quail. Neuroendocrinology 36:81–87

    Google Scholar 

  • Silver R, Witkovsky P, Horvath P, Alones V, Barnstable CJ, Lehman MN (1988) Coexpression of opsin- and VIP-like-immunoreactivity in CSF-contacting neurons of the avian brain. Cell Tissue Res 253:189–198

    Google Scholar 

  • Szél A, Röhlich P (1985) Localization of visual pigment antigen to photoreceptor cells with different oil droplets in the chicken retina. Acta Biol Hung 36:319–324

    Google Scholar 

  • Szél A, Takács L, Monostori E, Diamantstein T, Vigh-Teichmann I, Röhlich P (1986) Monoclonal antibody recognizing cone visual pigment. Exp Eye Res 43:871–883

    Google Scholar 

  • Szél A, Diamantstein T, Röhlich P (1988) Identification of the blue-sensitive cones in the mammalian retina by anti-visual pigment antibody. J Comp Neurol 273:593–602

    Google Scholar 

  • Takahashi JS, Murakami N, Nikaido SS, Pratt B, Robertson LM (1989) The avian pineal, a vertebrate model system of the circadian oscillator: Cellular regulation of circadian rhythms by light, second messengers, and macromolecular synthesis. Recent Prog Horm Res 45:279–351

    Google Scholar 

  • Underwood H, Menaker M (1976) Extraretinal photoreception in lizards. J Comp Physiol 83:187–222

    Google Scholar 

  • Veen Th van, Hartwig HG, Müller K (1976) Light-dependent motor activity and photonegative behavior in the eel (Anguilla anguilla L.). Evidence for extraretinal and extrapineal photoreception. J Comp Physiol 111:209–219

    Google Scholar 

  • Vigh B, Vigh-Teichmann I (1988) Comparative neurohistology and immunocytochemistry of the pineal complex with special reference to CSF-contacting neuronal structures. Pineal Res Rev 6:1–65

    Google Scholar 

  • Vigh B, Vigh-Teichmann I, Röhlich P, Aros B (1982) Immunoreactive opsin in the pineal organ of reptiles and birds. Z Mikrosk Anat Forsch 96:113–129

    Google Scholar 

  • Vigh B, Vigh-Teichmann I, Röhlich P, Oksche A (1983) Cerebrospinal fluid-contacting neurons, sensory pinealocytes and Landolt's clubs of the retina as revealed by means of electron-microscopic immunoreaction against opsin. Cell Tissue Res 233:539–548

    Google Scholar 

  • Vigh-Teichmann I, Röhlich P, Vigh B, Aros B (1980) Comparison of the pineal complex, retina and cerebrospinal fluid-contacting neurons by immunocytochemical antirhodopsin reaction. Z Mikrosk Anat Forsch 94:623–640

    Google Scholar 

  • Wald G (1968) Molecular basis of visual excitation. Science 162:230–239

    Google Scholar 

  • Yen L, Fager RS (1984) Chromatographic resolution of the rod pigment from the four cone pigments of the chicken retina. Vision Res 24:1555–1562

    Google Scholar 

  • Yokoyama K, Oksche A, Darden TR, Farner DS (1978) The sites of encephalic photoreception in the photoperiodic induction of growth of the testes in the white-crowned sparrow, Zonotrichia leucophrys gambelii. Cell Tissue Res 189:441–467

    Google Scholar 

  • Young JZ (1935a) The photoreceptors of lampreys I. Light-sensitive fibers in the lateral line nerves. J Exp Biol 12:229–238

    Google Scholar 

  • Young JZ (1935b) The photoreceptors of lampreys II. The functions of the pineal complex. J Exp Biol 12:254–270

    Google Scholar 

  • Yu L-W, Fager RS (1982) Visual pigments and phosphodiesterase of a cone-dominated lizard retina. Suppl Invest Ophthalmol Visual Sci 22:43

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foster, R.G., Garcia-Fernandez, J.M., Provencio, I. et al. Opsin localization and chromophore retinoids identified within the basal brain of the lizard Anolis carolinensis . J Comp Physiol A 172, 33–45 (1993). https://doi.org/10.1007/BF00214713

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00214713

Key words

Navigation