Skip to main content
Log in

Shear-induced structure in enzymatically-synthesized dextran solutions

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

A number of dextran derivatives and low molecular weight dextrans have found outlets in different fields such as fine chemistry and pharmaceutical industry, whereas only a few native (high molecular weight) dextrans have found applications. Thus, theoretical studies have scarcely concerned the rheological properties of native dextran solutions. Among the different synthesis processes, only the enzymaticin vitro synthesis produces a pure dextran, thereby allowing the rheological behavior of dextran solutions to be interpreted in terms of molecular considerations.

The shear viscosity curve reveals an irreversible threshold-type shear thickening at a specific critical shear rate\(\dot \gamma *\). The value of\(\dot \gamma *\) depends on the temperature of experiments and on the dextran concentration. Transient experiments give a description of the shear-thickening as a function of time and allows us to study the effect of several parameters (temperature, solvents, etc.). The shear stress growth, during the structure formation, is made of two different kinetics: the first one depends strongly on the molecular conformation; the second one is the result of intermolecular interactions of the hydrogen-type bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jeanes A, Haynes WC, Wilham CA, Rankin JC, Melvin EH, Austin MJ, Cluskey JE, Fisher BE, Tsuchiya HM, Rist CE (1954) J Amer Chem Soc 76:5041

    Google Scholar 

  2. Alsop RM (1983) Progress Ind Microbiol 18:1

    Google Scholar 

  3. Murphy PT, Whistler RL (1973) in: Whistler RL, DeMiller JN (eds) Industrial Gums — Polysaccharides and their derivatives, 2nd ed. Academic Press, New York, p 513

    Google Scholar 

  4. Jeanes A (1966) Encycl Polym Sci Technol 4:805

    Google Scholar 

  5. Jeanes A (1977) ACS Symposium series 45:284

    Google Scholar 

  6. De Waele A (1945) Chem Ind (London) 64:253

    Google Scholar 

  7. Hartmann J, Patat F (1957) Makromol Chemie 25:53

    Google Scholar 

  8. Ebert HK (1967) Monatshefte Chemie 98:1128

    Google Scholar 

  9. Sidebotham RL (1974) Adv Carbohydrate Chem Biochem 30:371

    Google Scholar 

  10. Becker WT, Milch RA (1967) Johns Hopkins Med J 121:234

    Google Scholar 

  11. Newbrun E, Lacy R, Christie TM (1971) Arch Oral Biol 16:863

    Google Scholar 

  12. Laurent TC (1963) Biochem J 85:253

    Google Scholar 

  13. Laurent TC (1963) Acta Chem Scand 17:2664

    Google Scholar 

  14. Laurent TC, Killander J (1964) J Chromatogr 14:317

    Google Scholar 

  15. Fedin EI, Tsitsishvili VG, Grinberg YA, Bakari TI, Tolstoguzov VB (1975) Carbohydr Res 39:193

    Google Scholar 

  16. Powell DA (1979) Microbial polysaccharides and poly-saccharases. Berkeley, Ellwood, Academic Press, London, p 117

    Google Scholar 

  17. Paul F, Monsan P, Auriol D (1983) French Patent 8 307 650

  18. Abbot D, Bourne EJ, Weigel H (1966) J Chem Soc (C):827

  19. Larm O, Lindberg B, Svesson S (1971) Carbohydr Res 20:39

    Google Scholar 

  20. Arond LH, Frank PH (1954) J Phys Chem 58:953

    Google Scholar 

  21. Bovey FA (1959) J Polymer Sci 35:167

    Google Scholar 

  22. Jeanes A (1965) in: Whistler RL, DeMiller JN (eds) Methods in Carbohydrate Chemistry, vol 5. Academic Press Inc, New York London, p 118

    Google Scholar 

  23. Senti FR, Hellman NN, Ludwigh NH, Babcock GE, Tobin R, Glass CA, Lamberts BL (1955) J Polym Sci 17:527

    Google Scholar 

  24. Ebert KH, Schenk G, Rupprecht G, Brosche M, Weng HW, Heinicke D (1965) Makromol Chem 96:206

    Google Scholar 

  25. Jackson KP, Walters K, Williams RW (1984) J Non-Newtonian Fluid Mech 14:173

    Google Scholar 

  26. Choplin L, Sabatié J, submitted to Rheol Acta

  27. Southnick JG, Lee H, Jamieson AM, Blackwell J (1980) Carbohydr Res 84:287

    Google Scholar 

  28. Antonini E, Bollelli L, Bruzzesi MR, Caputo A, Chiancone E, Rossi-Fanelli A (1964) Biopolymers 2:27

    Google Scholar 

  29. Casu B, Reggiani M (1966) Tetrahedron 22:3061

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabatié, J., Choplin, L., Paul, F. et al. Shear-induced structure in enzymatically-synthesized dextran solutions. Rheol Acta 25, 287–295 (1986). https://doi.org/10.1007/BF01357955

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01357955

Key words

Navigation