Skip to main content
Log in

The pathology of the lower leg muscles in pure forefoot pes cavus

  • Regular Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Enlargement of the peroneus longus muscle is a common occurrence in patients with forefoot pes cavus, and may contribute to the cavus deformity. The present study compares the morphology of up to five lower leg muscles from 17 patients with forefoot pes cavus with those of normal muscles. Eight cases had an identifiable neurogenic cause for the cavus. In four cases of hereditary motor-sensory neuropathy, the tibialis anterior showed more severe damage than the peroneus longus. In two cases of cerebral palsy, fibre atrophy and increased oxidative enzyme activity were observed. In nine clinically idiopathic cases, the histological appearances ranged from normal to generalised fibre atrophy or hypertrophy in individual muscles. There was a trend for the mean fibre area to be greater in peroneus longus than in tibialis anterior in six of the idiopathic group of patients. The muscle cross-sectional area on magnetic resonance imaging was correlated closely with the mean fibre area measured on tissue sections. In idiopathic forefoot pes cavus, fibre hypertrophy in peroneus longus (relative to tibialis anterior) may contribute to the cavus deformity. Muscle fibre hyperplasia may contribute to the peroneal muscle enlargement in Friedreich's ataxia. In none of the cases was peroneus longus enlargement due to fat or fibrous tissue replacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernat JL, Ochoa JL (1978) Muscle hypertrophy after partial denervation: a human case. J Neurol Neurosurg Psychiatry 41: 719–725

    Google Scholar 

  2. Brooke M, Engel A (1969) The histographic analysis of human muscle biopsies with regard to fibre types. 2. Diseases of the upper and lower motor neurones. Neurology 19: 378–393

    Google Scholar 

  3. Castle ME, Reyman TA, Schneider M (1979) Pathology of spastic muscle in cerebral palsy. Clin Orthop 142: 223–233

    Google Scholar 

  4. D'Alessandro R, Montagna P, Govoni E, Pazzaglia P (1982) Benign familial spinal muscular atrophy with hypertrophy of the calves. Arch Neurol 39: 657–660

    Google Scholar 

  5. Denny-Brown D (1960) Experimental studies pertaining to hypertrophy, regeneration and degeneration. Assoc Res Nerv Ment Dis Res Publ 38: 147–196

    Google Scholar 

  6. De Visser M, Verbeeten B, Lyppens KCH (1986) Pseudohypertrophy of the calf following S1 radiculopathy. Neuroradiology 28: 279–280

    Google Scholar 

  7. De Visser M, Hoogendijk JE, De Visser BWO, Verbeeten BJ (1990) Calf enlargement in hereditary motor and sensory neuropathy. Muscle Nerve 13: 40–46

    Google Scholar 

  8. Dietrichson P, Coakley J, Smith PEM, Griffiths RD, Helliwell TR, Edwards RHT (1987) Conchotome and needle percutaneous biopsy of skeletal muscle. J Neurol Neurosurg Psychiatry 50: 1461–1467

    Google Scholar 

  9. Dubowitz V (1985) Muscle biopsy. A practical approach, 2nd edn. Bailliere-Tindall, London

    Google Scholar 

  10. Duchenne GB (1867) Physiologie des movements. Paris, Baliere

    Google Scholar 

  11. Dwyer FC (1975) The present status of the problem of pes cavus. Clin Orthop 106: 254–275

    Google Scholar 

  12. Dyck PJ (1984) Inherited neuronal degeneration and atrophy affecting peripheral motor, sensory and autonomic neurons. In: Dyck PJ, Thomas PK, Lambert EH, Bunge R (eds) Peripheral neuropathy, 2nd edn. Saunders, Philadelphia, pp 1600–1639

    Google Scholar 

  13. Dyck PJ, Lambert EH (1968) Lower motor and primary sensory neuron diseases with peroneal muscular atrophy. Arch Neurol 18: 603–625

    Google Scholar 

  14. Edwards RHT, Griffiths RD, Hayward M, Helliwell T (1986) Modern methods of diagnosis of muscle diseases. J R Coll Physicians Lond 20: 9–55

    Google Scholar 

  15. Fick R (1911) Handbuch der Anatomia und Mechanic der Gelenke. Fischer, Jena

    Google Scholar 

  16. Haase GR, Shy GM (1960) Pathological changes in muscle biopsies from patients with peroneal muscular atrophy. Brain 83: 31–636

    Google Scholar 

  17. Helliwell TR, Coakley J, Smith PEM, Edwards RHT (1987) The morphology and morphometry of the normal human tibialis anterior muscle. Neuropathol Appl Neurobiol 13: 297–307

    Google Scholar 

  18. Henriksson-Larsen K, Lexell J, Sjostrom M (1983) Distribution of different fibre types in human skeletal muscles. I. Method for the preparation and analysis of cross-sections of whole tibialis anterior. Histochem J 15: 167–178

    Google Scholar 

  19. Hughes RJ, Brownell B (1972) Pathology of peroneal muscular atrophy. J Neurol Neurosurg Psychiatry 35: 648–657

    Google Scholar 

  20. James NT (1973) Compensatory hypertrophy in the extensor digitorum longus muscle of the rat. J Anat 116: 57–65

    Google Scholar 

  21. Kennedy JM, Eisenberg BR, Reid SK, Sweeney LJ, Zak R (1988) Nascent muscle fibre appearance in overloaded chicken slow-tonic muscle. Am J Anat 181: 203–215

    Google Scholar 

  22. Lapresle J, Fardeau M, Said G (1973) L'hypertrophie musculaire vraie secondaire a une atteinte nerveuse peripherique. Rev Neurol (Paris) 128: 153–160

    Google Scholar 

  23. Lexell J, Henriksson-Larsen K, Sjostrom M (1983) Distribution of different fibre types in human skeletal muscles. 2. A study of cross-sections of whole m. vastus lateralis. Acta Physiol Scand 117: 115–122

    Google Scholar 

  24. Montagna P, Martinelli P, Rasi F, Cirignotta F, Govoni E, Lugaresi E (1984) Muscular hypertrophy after chronic radiculopathy. Arch Neurol 41: 397–398

    Google Scholar 

  25. O'Connor BT (1959) Some fundamental concepts of pes cavus. Thesis, University of Liverpool, Liverpool

  26. O'Dwyer NJ, Neilson PD, Nash J (1989) Mechanisms of muscle growth related to contracture in cerebral palsy. Dev Med Child Neurol 31: 543–552

    Google Scholar 

  27. Polgar J, Johnson MA, Weightman D, Appleton D (1973) Data on fibre size in thirty six human muscles. An autopsy study. J Neurol Sci 19: 307–318

    Google Scholar 

  28. Prince FP, Hikida RS, Hagerman FC (1976) Human muscle fibre types in power lifters, distance runners and untrained subjects. Pflügers Arch 363: 19–26

    Google Scholar 

  29. Ricker K, Rohkamm R, Moxley RT (1988) Hypertrophy of the calf with S-1 radiculopathy. Arch Neurol 45: 660–664

    Google Scholar 

  30. Romanini L, Villani C, Meloni C, Calvisi V (1989) Histological and morphological aspects of muscle in infantile cerebral palsy. Ital J Orthop Traumatol 15: 87–93

    Google Scholar 

  31. Sabir M, Lyttle D (1984) Pathogenesis of Charcot-Marie-Tooth disease. Clin Orthop 184: 223–235

    Google Scholar 

  32. Salleo A, Anastasi G, La Spada C, Falzea G, Denaro MG (1980) New muscle fibre production during compensatory hypertrophy. Med Sci Sports Exerc 12: 268–273

    Google Scholar 

  33. Salmons S, Henriksson J (1981) The adaptive response of skeletal muscle to increased use. Muscle Nerve 4: 94–105

    Google Scholar 

  34. Saltin B, Nazar K, Costill DL, Stein E, Jansson E, Essen B, Gollnick PD (1976) The nature of the training response: peripheral and central adaptations to one-legged exercise. Acta Physiol Scand 96: 289–305

    Google Scholar 

  35. Samilson RL, Dillin W (1983) Cavus, cavovarus and calcaneocavus. An update. Clin Orthop 177: 125–132

    Google Scholar 

  36. Sjostrom M, Lexell J, Eriksson A, Taylor CC (1991) Evidence of fibre hyperplasia in human skeletal muscles from healthy young men? Eur J Appl Physiol 62: 301–304

    Google Scholar 

  37. Sola OM, Christensen DL, Martin AW (1973) Hypertrophy and hyperplasia of adult chicken anterior latissimus dorsi muscles following stretch with and without denervation. Exp Neurol 41: 76–100

    Google Scholar 

  38. Sulaiman AR, Kinder DS (1989) Vascularized muscle fibres: etiopathogenesis and clinical significance. J Neurol Sci 92: 37–54

    Google Scholar 

  39. Swash M, Schwartz MS (1984) Biopsy pathology of muscle. Chapman and Hall, London

    Google Scholar 

  40. Tardieu C, Huet de la Tour E, Bret MD, Tardieu G (1982) Muscle hypoextensibility in children with cerebral palsy. 1. Clinical and experimental observations. Arch Phys Med Rehabil 63: 97–102

    Google Scholar 

  41. Tynan MC, Klenerman L, Helliwell TR, Edwards RHT, Hayward M (1992) Investigation of muscle imbalance in the leg in symptomatic forefoot pes cavus: a multidisciplinary study. Foot Ankle 13: 489–501

    Google Scholar 

  42. Valenstein E, Watson RT, Parker JL (1978) Myokymia, muscle hypertrophy and percussion ‘myotonia’ in chronic recurrent polyneuropathy. Neurology 28: 1130–1134

    Google Scholar 

  43. Vasilescu C, Alexianu M, Dan A (1984) Neuronal type of Charcot-Marie-Tooth disease with a syndrome of continuous motor unit activation. J Neurol Sci 63: 11–25

    Google Scholar 

  44. Weber W, Weber E (1836) Mechanik der menschlichen Gehwerkzeuge. Dieterichschen, Gottingen

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helliwell, T.R., Tynan, M., Hayward, M. et al. The pathology of the lower leg muscles in pure forefoot pes cavus. Acta Neuropathol 89, 552–559 (1995). https://doi.org/10.1007/BF00571511

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00571511

Key words

Navigation