Skip to main content
Log in

Bizarre geochemistry of komatiites from the Crixás greenstone belt, Brazil

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Komatiite lava flows in the Crixás greenstone belt, Goiás, Brazil, have textures and volcanic structures typical of Archean komatiites, but are geochemically most unusual. The flows are porphyritic and massive, or layered with spinifex upper parts and olivine cumulate lower parts. MgO contents range from 18 to 40%. In such lavas, only olivine (and minor chromite) can have crystallized, but neither major nor trace elements fall on olivine control lines. In MgO variation diagrams, CaO and Sr fall on lines with slopes steeper than olivine control lines; SiO2, FeO, Na2O, K2O and Y show little systematic variation; Zr shows a large variation that does not correlate with MgO; and Al2O3 decreases markedly with decreasing MgO. The aberrant behaviour is highlighted by the REE (rare earth elements) in spinifex and olivine cumulate layers from three flows: in the spinifex layers, chondrite-normalized REE patterns are hump-shaped with maxima at Nd or Sm ((La/Sm)N=0.6, (Gd/Yb)N=1.6–2.3), whereas cumulate zones in the same flows have steadily sloping patterns, with LREE enriched relative to HREE ((La/Sm)N=1.3, (Gd/Yb)N=1.4). Neither normal magmatic processes acting during emplacement of the komatiites, nor thermal erosion and wall-rock assimilation can explain these effects, and we speculate that elements commonly thought of as “immobile” (e.g. Al, Zr, REE) migrated during hydrothermal alteration or metamorphism. A Pb-Pb whole rock isochron gave an age of 2,728±140 Ma and selected Sm-Nd analyses an apparent isochron age of 2,825±98 Ma (ɛNd≈0). The Pb-Pb age is believed to be the approximate time of emplacement. Interpretation of the Sm-Nd data is complicated by the evidence of mobility of REE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitken B, Echeverría LM (1984) Petrology and geochemistry of komatiites and tholeiites from Gorgona Island, Colombia. Contrib Mineral Petrol 86:94–105

    Article  Google Scholar 

  • Arndt NT (1976) Melting relations of ultramafic lavas (komatiites) at one atmosphere and high pressures. Carnegie Inst Washington Yrbk, 75:426–427

    Google Scholar 

  • Arndt NT (1986) Komatiites: a dirty window to the Archean mantle. Terra Cognita 6:59–66

    Google Scholar 

  • Arndt NT (1986) Differentiation of komatiite flows. J Petrol 27:279–301

    Google Scholar 

  • Arndt NT (1987) Spinifex and swirling olivines in a komatiite lava lake, Munro Township, Ontario. Precam Res 34:139–155

    Google Scholar 

  • Arndt NT, Jenner GA (1986) Crustally contaminated komatiites and basalts from Kambalda, Western Australia. Chem Geol 56:229–255

    Article  Google Scholar 

  • Arndt NT, Nesbitt RW (1982) Geochemistry of Munro Township basalts. In: Arndt NT, Nisbet EG (eds) Komatiites. Allen and Unwin, London Boston Sydney, pp 309–330

    Google Scholar 

  • Bavinton OA (1981) The nature of sulfidic metasediments at Kambalda and their broad relationships to ultramafic rocks and nickel ores. Econ Geol 76:1606–1628

    Google Scholar 

  • Beswick AE (1982) Some geochemical aspects of alteration and genetic relations in komatiitic suites. In: Arndt NT, Nisbet AE (eds) Komatiites. Allen and Unwin, London Boston Sydney, pp 281–308

    Google Scholar 

  • Bickle MJ (1982) The magnesium contents of komatiitic liquids. In: Arndt NT, Nisbet EG (eds) Komatiites. Allen and Unwin, London Boston Sydney, pp 477–494

    Google Scholar 

  • Brévart O, Dupré B, Allègre CJ (1986) Lead-lead age of komatiitic lavas and limitations on the structure and evolution of Precambrian mantle. Earth Planet Sci Lett 77:293–302

    Article  Google Scholar 

  • Cattell A, Krogh TE, Arndt NT (1984) Conflicting Sm-Nd and U-Pb zircon ages for Archean lavas from Newton Township, Abitibi Belt, Ontario. Earth Planet Lett 70:280–290

    Google Scholar 

  • Chauvel C, Dupré B, Jenner GA (1985) The Sm-Nd age of Kambalda volcanics is 500 Ma too old! Earth Planet Sci Lett 74:315–324

    Google Scholar 

  • Danni JCM, Ribeiro CC (1978) Caracterisacao estratigrafica da sequencia vulcanosedimentar de Pilar de Goias e Guarinos, Goias. Anias Sco Bras Geol 2:582–597

    Google Scholar 

  • De Almeida FFM, Hasui Y, de Brito Neves BB, Fuck RA (1981) Brazilian structural provinces: an introduction. Earth Sci Rev 14:1–30

    Google Scholar 

  • Donaldson CH (1982) Spinifex-textured komatiites: a review of textures, mineral compositions and layering. In: Arndt NT, Nisbet EG (eds) Komatiites. Allen and Unwin, London Boston Sydney, pp 211–244

    Google Scholar 

  • Dupré B, Arndt NT (1988) Pb isotopic compositions of Archean komatiites and Sulfides: clues to the composition of Archean mantle and crust. Chem Geol (in press)

  • Dupré B, Chauvel C, Arndt NT (1984) Pb and Nd isotopic study of two Archean komatiitic flows from Alexo, Ontario. Geochim Cosmochim Acta 48:1965–1972

    Google Scholar 

  • Green DH, Nicholls IA, Viljoen MJ, Viljoen RP (1975) Experimental demonstration of the existence of peridotitic liquids in earliest Archean magmatism. Geology 3:11–15

    Google Scholar 

  • Gresham JJ, Loftus-Hills GD (1981) The geology of the Kambalda Nickel Field, Western Australia. Econ Geol 76:1373–1416

    Google Scholar 

  • Gruau G, Jahn BM, Glickson AY, Hickman AH, Chauvel C (1987) Age of the Archean Talga-Talga Subgroup, Pilbara Block, Western Australia, and early evolution of the mantle: new Sm-Nd isotopic evidence. Earth Planet Sci Lett 85:105–116

    Article  Google Scholar 

  • Huppert HE, Sparks RSJ, Turner JS, Arndt NT (1984) The emplacement and cooling of komatiite lavas. Nature 309:19–22

    Article  Google Scholar 

  • Jahn BM, Auvray B, Cornichet J, Bai YL, Shen QH, Liu DY (1987) 3.5 Ga old amphibolites from eastern Hebei Province, China: field occurrence, petrography, Sm-Nd isochron age and REE geochemistry. Precam Res 34:311–346

    Article  Google Scholar 

  • Jahn BM, Gruau G, Glickson AY (1982) Komatiites of the Onverwacht Group, S. Africa: REE geochemistry, Sm/Nd age, and mantle evolution. Contrib Mineral Petrol 80:25–40

    Article  Google Scholar 

  • Jolly W (1982) Progressive metamorphism of komatiites and related Archaean lavas of the Abitibi area, Canada. In: Arndt NT, Nisbet EG (eds) Komatiites. Allen and Unwin, London Boston Sydney, pp 245–266

    Google Scholar 

  • Kinzler RJ, Grove TL (1985) Crystallization and differentiation of Archean komatiitic lavas from northeast Ontario: phase equilibrium and kinetic studies. Amer Mineral 70:40–51

    Google Scholar 

  • Lesher CM (1983) Localization and genesis of komatiite-associated Fe-Ni-Cu sulphide mineralization at Kambalda, Western Australia. Ph D Thesis, University of Western Australia, Nedlands

    Google Scholar 

  • Murphy JB, Hynes AJ (1986) Contrasting secondary mobility of Ti, P, Zr, Nb and Y in two metabasaltic suites in the Appalacians. Canad J Earth Sci 23:1138–1144

    Google Scholar 

  • Nakamura N (1974) Determination of REE, Ba, Fe, Mg, Na, and K in carbonaceous and ordinary chondrites. Geochim Cosmochim Acta 38:757–775

    Article  Google Scholar 

  • Nesbitt RW, Sun SS, Purvis AC (1979) Komatiites: geochemistry and petrogenesis. Canad Mineral 17:165–186

    Google Scholar 

  • Nisbet EG, Arndt NT, Bickle MJ, Cameron WE, Chauvel C, Cheadle M, Hegner E, Kyser TK, Martin A, Renner R, Roedder E (1987) Uniquely fresh 2.7 Ga komatiites from the Belingwe greenstone belt, Zimbabwe. Geology 15:1147–1150

    Google Scholar 

  • Nisbet EG, Bickle MJ, Martin A (1977) The mafic and ultramafic lavas of the Belingwe greenstone belt, Rhodesia. J Petrol 18:521–566

    Google Scholar 

  • Norrish K, Chappel BW (1967) X-ray fluorescence spectrography. In: Zussman J (ed) Physical methods of determinative mineralogy. Academic Press, London, pp 161–214

    Google Scholar 

  • Pyke DR, Naldrett AJ, Eckstrand OR (1973) Archean ultramafic flows in Munro Township, Ontario. Geol Soc Am Bull 84:955–978

    Article  Google Scholar 

  • Reed SBJ, Ware NG (1975) Quantitative electron microprobe analysis of silicates using energy dispersive x-ray spectrometry. J Petrol 16:499–519

    Google Scholar 

  • Smith HS, Erlank AJ (1982) Geochemistry and petrogenesis of komatiites from the Barberton greenstone belt, South Africa. In: Arndt NT, Nisbet EG (eds) Komatiites. Allen and Unwin, London Boston Sydney, pp 347–398

    Google Scholar 

  • Soboia LA, Teixiera NA (1980) Lavas ultrabasicas da unidada basal do “greenstone belt” de Crixas (GO): uma nova classe de rochas ultrabasicas no Estado de Goias. Rev Bras Geosciencias 10:28–42

    Google Scholar 

  • Sun SS, Nesbitt RW (1978) Petrogenesis of Archaean ultrabasic and basic volcanics: evidence from rare earth elements. Contrib Mineral Petrol 65:301–325

    Article  Google Scholar 

  • Topp SE, Salbu B, Roalset E, Jorgensen E (1984) Vertical distribution of trace elements in lateritic soil (Surinam). Chem Geol 47:159–174

    Article  Google Scholar 

  • Viljoen MJ, Viljoen RP (1969) The geology and geochemistry of the lower ultramafic unit of the Onverwacht Group and a proposed new class of igneous rocks. Spec Publ Geol Soc S Afr 2:55–85

    Google Scholar 

  • White WM, Patchett PJ (1984) Hf-Nd-Sr isotopes and incompatible-element abundances in island arcs, and implications for magma origins and crust-mantle evolution. Earth Planet Sci Lett 67:167–185

    Article  Google Scholar 

  • York D (1966) Least squares fitting of a straight line. Can J Phys 44:1079–1084

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arndt, N.T., Teixeira, N.A. & White, W.M. Bizarre geochemistry of komatiites from the Crixás greenstone belt, Brazil. Contr. Mineral. and Petrol. 101, 187–197 (1989). https://doi.org/10.1007/BF00375305

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00375305

Keywords

Navigation