Skip to main content
Log in

Examination of spinal column vibrations: a non-invasive approach

  • Published:
European Journal of Applied Physiology and Occupational Physiology Aims and scope Submit manuscript

Summary

Accelerations of vertebrae during whole-body vibration (WBV) are used in occupational biomechanics for the prediction of internal stress. To avoid invasive techniques, a method for the calculation of bone accelerations was developed using measurements on the skin. The soft tissue between spinous processes L3 and T5 and miniature accelerometers stuck to the skin over them was modelled by a simple Kelvin element, whose parameters i.e. angular natural frequencyω n4 and critical dampingζ describe an approximate transfer function between the bone (input) and the skin surface (output). The parameters were determined from free damped oscillations of the accelerometer-skin complex in the Z-axis, and depended significantly on the factors “subject” and “point of measurement”. In one subject, the time courses of bone accelerations during sinusoidal WBV (4.5 and 8 Hz; 1.5 m·s−2 RMS) were calculated using separate transfer functions for each of 11 different spinal levels. Since the output signals on the skin were non-sinusoidal, the skin accelerations had to be treated with an inverse transfer function in the frequency domain. A comparison of accelerations measured on the skin and predicted for the bone mainly indicates that absolute peak values of bone accelerations are smaller and occur earlier. Both kinds of acceleration hint at differences in WBV-induced internal stress within the spine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Artmann M, Kaltschmidt H, Viernstein K, Wirth CJ (1976) Das Verhalten der Beschleunigungsübertragung vom Beckenkamm auf einen äußeren Beschleunigungsaufnehmer beim Menschen. Biomed Techn 21:213–221

    Google Scholar 

  • Blüthner R, Hinz B, Seidel H (1986) Zur Möglichkeit einer Abschätzung der Wirbelsäulenbeanspruchung durch Ganzkörpervibration unter experimentellen Bedingungen. Z Ges Hyg 32:111–113

    Google Scholar 

  • Buchholz Ch, Kramer H, Rothe R, Seidel H (1976) Vorbedingungen für den elektrischen Nachweis von Aktivitätsunterschieden an der Rückenstreckenmuskulatur bei vorgegebener Körperhaltung. Z. Ges Hyg 22:332–335

    Google Scholar 

  • Chaffin B, Andersson BJ (1984) Occupational biomechanics. John Wiley & Sons, New York

    Google Scholar 

  • Christ W, Dupuis H (1966) Über die Beanspruchung der Wirbelsäule unter dem Einfluß sinusförmiger und stochastischer Schwingungen. Int Z Angew Physiol 22:258–278

    Google Scholar 

  • Denoth J, Gruber K, Ruder H, Keppler M (1985) Forces and torques during sports activities with high accelerations. In: Perren SM, Schneider E (eds) Biomechanics: current interdisciplinary research. Martinus Nijhoff Publishers, Dordrecht Boston Lancaster, pp 663–668

    Google Scholar 

  • Draft for Development (1973) Guide to the safety aspects of human vibration experiments, DD23, Gr 7. British Standard Institution, London

    Google Scholar 

  • Franke EK (1951) Mechanical impedance of the surface of the human body. J Appl Physiol 3:582–590

    Google Scholar 

  • Furnee EH (1986) Innovation in video-digital coordinate measurement for movement analysis: real-time, high resolution, estimation with high-speed stroboscopic TV. In: Abstract Book of the Fifth meeting of the ESB. Berlin (W), p 134

  • Gierke von HE, Oestreicher HL, Franke EK, Parrack HO, Wittern WWv (1952) Physics of vibrations in living tissue. J Appl Physiol 4:886–900

    Google Scholar 

  • Hinz B, Seidel H (1986) On the nonlinear internal stress of the human body during sinusoidal whole-body vibration. In: Jansons H, Kalnbers V (eds) Trends in human biomechanics research and application in medicine and surgery. Min Health, Riga, pp 450–456

    Google Scholar 

  • Hinz B, Seidel H (1987a) The nonlinearity of the human body's dynamic response during sinusoidal whole-body vibration. Ind Health 25:169–181

    Google Scholar 

  • Hinz B, Seidel H, Bluethner R (1985) On the effects of whole-body vibration on the spine — the significance of the human biodynamics. In: Frolov KV (ed) Proceedings of the second international CISM-IFToMM Symposium. Moscow, pp 56–60

  • Hinz B, Seidel H, Bräuer D (1987b) Transmission characteristics of the human spine for low-frequency whole-body vibration. XIth International Congress of Biomechanics, Amsterdam, June 28–July 3

  • Hinz B, Seidel H, Bluethner R (1988) The internal stress of the human body during whole body vibration. In: Jansons H, Kalnbers V (eds) Trends in human biomechanics research and application in medicine and surgery. Min Health, Riga, vol 5 (in press)

    Google Scholar 

  • Krause H (1963) Das schwingungsmechanische Verhalten der Wirbelsäule. Int Z Physiol 20:125–155

    Google Scholar 

  • Lafferty JF (1978) Analytical model of the fatigue characteristics of bone. Aviat Space Environ Med 49:170–174

    Google Scholar 

  • Lange W, Coermann R (1964) Relativbewegungen benachbarter Wirbel unter Schwingungsbelastungen. Int Z Physiol 21:326–334

    Google Scholar 

  • Liu YK, Ray G (1975) Dynamic response of human spine in (+g z) acceleration — a two dimensional model. In: Skalak R, Nerem RM (eds) Applied mechanics conference. The Reusselaer Polytechnic Institute, Troy New York, pp 23–25

    Google Scholar 

  • Oestreicher HL (1951) Field and impedance of an oscillating sphere in a viscoelastic medium with an application to biomechanics. J Acoust Soc Am 23:707–714

    Google Scholar 

  • Panjabi MM, Andersson GBJ, Jorneus L, Hult E, Mattson L (1986) In vivo measurements of spinal column vibrations. J Bone Joint Surg 68-A:695–702

    Google Scholar 

  • Sandover J (1981) Vibration, posture and low-back disorders of professional drivers. Report DHS 402 Univ Techn Loughborough, 141 p

  • Seidel H, Heide R (1986) Long-term effects of whole-body vibration: a critical survey of the literature. Int Arch Occup Environ Health 58:1–26

    Google Scholar 

  • Seidel H, Beyer H, Blüthner R, Bräuer D, Hinz B, Menzel G, Weissmüller A (1984) Electromyography in back research — assessment of static and dynamic conditions. In: Perren SM, Schneider E (eds) Biomechanics: current interdisciplinary research. Martinus Nijhoff Publishers, Dordrecht Boston Lancaster, pp 611–616

    Google Scholar 

  • Seidel H, Bluethner R, Hinz B (1986) Effects of sinusoidal whole-body vibration on the lumbar spine: the stress-strain relationship. Int Arch Occup Environ Health 57:207–223

    Google Scholar 

  • Varju D (1977) Systemtheorie. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Weeren PR van, Barneveld A (1986) A technique to quantify skin displacement in the walking horse. J Biomech 19:879–883

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinz, B., Seidel, H., Bräuer, D. et al. Examination of spinal column vibrations: a non-invasive approach. Europ. J. Appl. Physiol. 57, 707–713 (1988). https://doi.org/10.1007/BF01075992

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01075992

Key words

Navigation