Skip to main content
Log in

Quantitation of anionic sites in glomerular capillar basement membranes of Samoyed dogs with hereditary glomerulopathy

  • Published:
Virchows Archiv A Aims and scope Submit manuscript

Summary

Samoyed hereditary glomerulopathy (SHG) is an X-linked dominant disease characterized by proteinuria and renal failure in affected male dogs. Electron microscopic examination of glomerular capillary basement membranes (GCBM) shows widespread multilaminar splitting of the lamina densa, identical to that in Alport's syndrome. Anionic sites in GCBM of three affected males and five unaffected dogs were labeled using polyethyleneimine to determine whether proteinuria was associated with an alteration in their number. No significant differences were noted in the number of anionic sites in the lamina rara externa, whereas small but statistically significant increases were seen in the number of sites in the lamina rara interna of affected males. In the lamina densa, affected males showed a striking increase in anionic sites, particularly in regions of GCBM which were split. Thus, although proteinuria in some glomerular diseases has been attributed to a reduction in anionic sites in GCBM, this was not so in SHG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernard MA, Valli VE (177) Familial renal disease in Samoyed dogs. Can Vet J 18:181–189

    Google Scholar 

  • Bohrer MP, Baylis C, Robertson CR, Brenner BM (1977) Mechanisms of the puromycin-induced defects in the transglomerular passage of water and macromolecules. J Clin Invest 60:152–161

    Google Scholar 

  • Brenner BM, Hostetter TH, Humes HD (1978) Moleculer basis of proteinuria of glomerular origin. N Engl J Med 298:826–833

    Google Scholar 

  • Bridges CR, Myers BD, Brenner BM, Deen WM (1982) Glomerular charge alterations in human minimal change nephropathy. Kidney Int 22:677–684

    Google Scholar 

  • Carrie BJ, Myers BD (1980) Proteinuria and functional characteristics of the glomerular barrier in diabetic nephropathy. Kidney Int 17:669–676

    Google Scholar 

  • Caulfield JP (1979) Alterations in the distribution of alcian blue-staining fibrillar anionic sites in the glomerular basement membrane in aminonucleoside nephrosis. Lab Invest 40:503–511

    Google Scholar 

  • Caulfield JP, Farquhar MG (1974) The permeability of glomerular capillaries to graded dextrans. J Cell Biol 63:883–903

    Google Scholar 

  • Caulfield JP, Farquhar MG (1978) Loss of anionic sites from the glomerular basement membrane in aminonucleoside nephrosis. Lab Invest 39:505–512

    Google Scholar 

  • Charonis AS, Wissig SL (1983) Anionic sites in basement membranes. Differences in their electrostatic properties in continuous and fenestrated capillaries. Microvasc Res 25:265–285

    Google Scholar 

  • Farquhar MG (1975) The primary glomerular filtration barrier-basement membrane or epithelial slits? Kidney Int 8:197–211

    Google Scholar 

  • Ferrara TB, Sisson SP, Vernier RL (1985) Localization and quantitation of anionic charge sites in fetal and neonatal alveolar basement membranes. J Histochem Cytochem 33:611–614

    Google Scholar 

  • Hascall GK (1980) Cartilage proteoglycans: Comparison of sectioned and spread whole molecules. J Ultrastruct Res 70:368–375

    Google Scholar 

  • Hassell RJ, Robey PG, Barrach HJ, Wilczek J, Rennard SI, Martin GR (1980) Isolation of a heparan sulphate-containing proteoglycan from basement membrane. Proc Natl Acad Sci 77:4494–4498

    Google Scholar 

  • Hirsch HZ, Ainsworth SK, Spicer SS, Kurtz EH, Brissie RM (1981) Ultrastructural assessment by colloidal iron of the distribution and localization of anionic sites in human glomerulonephritis. Am J Pathol 102:99–107

    Google Scholar 

  • Jansen B, Thorner PS, Singh A, Patterson JM, Lumsden JH, Valli VE, Baumal R, Basrur PK (1984) Hereditary nephritis in Samoyed dogs. Am J Pathol 116:175–178

    Google Scholar 

  • Jansen B, Tryphonas L, Wong J, Thorner P, Maxie MG, Valli VE, Baumal R, Basrur PK (1986) Mode of inheritance of Samoyed hereditary glomerulopathy: an animal model for hereditary nephritis in man. J Lab Clin Med 107:551–555

    Google Scholar 

  • Kanwar YS (1984) Biophysiology of glomerular filtration and proteinuria. Lab Invest 51:7–21

    Google Scholar 

  • Kanwar YS, Farquhar MG (1979a) Presence of heparan sulfate in the glomerular basement membrane. Proc Natl Acad Sci 76:1303–1307

    Google Scholar 

  • Kanwar YS, Farquhar MG (1979b) Anionic sites in the glomerular basement membrane. J Cell Biol 81:137–153

    Google Scholar 

  • Kanwar YS, Farquhar MG (1979c) Isolation of glycosaminoglycans (heparan sulfate) from glomerular basement membranes. Proc Natl Acad Sci 76:4493–4497

    Google Scholar 

  • Kanwar YS, Jakubowski ML (1984) Unaltered anionic sites of glomerular basement membrane in aminonucleoside nephrosis. Kidney Int 25:613–618

    Google Scholar 

  • Kanwar YS, Rosenzweig LJ (1982) Clogging of the glomerular basement membrane. J Cell Biol 93:489–494

    Google Scholar 

  • Kanwar YS, Rosenzweig LJ, Kerjaschki DI (1981) Glycosaminoglycans of the glomerular basement membrane in normal and nephrotic states. Renal Physiol 4:121–130

    Google Scholar 

  • Klein DJ, Oegema TR, Eisenstein R, Furcht L, Michael AF, Brown DM (1983) Renal localization of heparan sulfate proteoglycan by immunohistochemistry. Am J Pathol 111:323–330

    Google Scholar 

  • Mahan J, Sisson S, Vernier RL (1983) Decrease in anionic charge sites (CS) in the lamina rara externa (LRE) in aminonucleoside nephrosis. Kidney Int (abstract) 12:187

    Google Scholar 

  • Manabe M, Ogawa H (1985) Ultrastructural demonstration of anionic sites in basement membrane zone by cationic probes. J Invest Dermatol 84:19–21

    Google Scholar 

  • Mynderse LA, Hassell Jr, Kleinman HK, Martin GR, Martinez-Hernandez A (1983) Loss of heparan sulfate proteoglycan from glomerular basement membrane of nephrotic rats. Lab Invest 48:292–303

    Google Scholar 

  • Parthasarathy N, Spiro RG (1981) Characterization of the glycosaminoglycan component of the renal glomerular basement membrane and its relationship to the peptide portion. J Biol Chem 256:507–513

    Google Scholar 

  • Parthasarathy N, Spiro RG (1982) Effect of diabetes on the glycosaminoglycan component of the human glomerular basement membrane. Diabetes 31:738–741

    Google Scholar 

  • Pilia PA, Boackle RJ, Swain RP, Ainsworth SK (1983) Complement-independent nephrotoxic serum nephritis in Munich Wistar rats. Lab Invest 48:585–597

    Google Scholar 

  • Pilia PA, Swain RP, Williams AV, Loadholt CB, Ainsworth SK (1985) Glomerular anionic site distribution in nonproteinuric rats. A computer-assisted morphometric analysis. Am J Pathol 121:474–485

    Google Scholar 

  • Reale E, Luciano L, Kühn K-W (1983) Ultrastructural architecture of proteoglycans in the glomerular basement membrane. A cytochemical approach. J Histochem Cytochem 31:662–668

    Google Scholar 

  • Rennke HG, Patel Y, Venkatachalam MA (1978) Glomerular filtration of proteins: clearance of anionic, neutral, and cationic horseradish peroxidase in the rat. Kidney Int 13:278–288

    Google Scholar 

  • Rohrbach DH, Hassell Jr, Kleinman HK, Martin GR (1982) Alterations in the basement membrane (heparan sulfate) proteoglycan in diabetic mice. Diabetes 31:185–188

    Google Scholar 

  • Schurer JW, Hoedemaeker PJ, Molenaar I (1977) Polyethyleneimine as tracer particle for (immuno) electron microscopy. J Histochem Cytochem 25:384–387

    Google Scholar 

  • Schurer JW, Kalicharan D, Hoedemaeker PJ, Molenaar I (1978) The use of polyethyleneimine for demonstration of anionic sites in basement membranes and collagen fibrils. J Histochem Cytochem 26:688–689

    Google Scholar 

  • Suzuki Y, Maesawa A, Matsui K, Oite T, Koda Y, Arakawa M (1983) Alteration of glomerular anionic sites by the development of subepithelial deposits in experimental glomerulonephritis in the rat. Virchows Arch (Cell Pathol) 44:209–222

    Google Scholar 

  • Vernier RL, Klein DJ, Sisson SP, Mahan JD, Oegema TR, Brown DM (1983) Heparan sulfate-rich anionic sites in the human glomerular basement membrane. N Engl J Med 309:1001–1009

    Google Scholar 

  • Wight TN, Ross R (1975) Proteoglycans in primate arteries. I. Ultrastructural localization and distribution in the intima. J Cell Biol 67:660–674

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was supported by a grant from the Medical Research Council of Canada

P.S. Thorner and B. Jansen were recipients of MRC fellowships

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thorner, P.S., Jansen, B., Liang, J. et al. Quantitation of anionic sites in glomerular capillar basement membranes of Samoyed dogs with hereditary glomerulopathy. Vichows Archiv A Pathol Anat 411, 79–85 (1987). https://doi.org/10.1007/BF00734518

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00734518

Key words

Navigation