Skip to main content
Log in

Multiple peptide production and presence of general neuroendocrine markers detected in 12 cases of human phaeochromocytoma and in mammalian adrenal glands

  • Published:
Virchows Archiv A Aims and scope Submit manuscript

Summary

In this study, antibodies to a range of markers of neuroendocrine differentiation were evaluated for their use in the histopathological assessment and characterisation of phaeochromocytomas. Routinely processed wax blocks from eleven adrenal phaeochromocytomas (10 benign and 1 malignant) and one benign phaeochromocytoma of the urinary bladder were investigated. In addition to these tumours, normal human, cat and piglet adrenal glands were examined. In the phaeochromocytomas, immunostaining was obtained with 21 of the 25 antisera used. Of the general neuroendocrine markers, neuron-specific enolase was found in all tumours, and chromogranin and protein gene-product 9.5 in most of the cases. A range of regulatory peptide immunoreactivities could be demonstrated, such as enkephalin, neuropeptide tyrosine (NPY), 7B2, galanin and vasoactive intestinal polypeptide (VIP). In addition, two peptides were found which have not been reported previously in these tumours, peptide histidine methionine (PHM) and the cryptic fragment of the precursor encoding VIP. Co-localisation studies revealed that peptides derived from the same precursor or peptide family were found in the same tumour cells (e.g. VIP and PHM, NPY and its C-flanking peptide CPON).

In the normal adrenal medulla, all the peptides previously reported to be present could be demonstrated immunocytochemically. Galanin was present in a subpopulation of cells also immunoreactive for enkephalin. Neuropeptide tyrosine and CPON were demonstrated in another subpopulation. Occasionally, cells were found to contain all four antigen immunoreactivities. Using antisera to enzymes involved in catecholamine synthesis, galanin was found to be present in noradrenalin-containing cells. The study demonstrates the presence of various antigens in chromaffin tissue of the adrenal gland. A range of substances can also be identified immunocytochemically in phaeochromocytoma tissue, using routinely-processed material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian TE, Allen JM, Terenghi G, Bacarese Hamilton AJ, Brown MJ, Polak JM, Bloom SR (1983) Neuropeptide Y in phaeochromocytomas and ganglioneuroblastomas. Lancet ii:540–542

    Google Scholar 

  • Allen JM, Adrian TE, Polak JM, Bloom SR (1983) Neuropeptide Y (NPY) in the adrenal gland. J Aut Nerv Syst 9:559–563

    Google Scholar 

  • Bauer FE, Hacker GW, Terenghi G, Adrian TE, Polak JM, Bloom SR (1986) Localisation and molecular forms of galanin in human adrenals: elevated levels in phaeochromocytoma. J Clin Endocrinol Metabol 63:1372–1378

    Google Scholar 

  • Berelowitz M, Szabo M, Barowsky NH, Arbal ER, Frohman LA (1983) Somatostatin-like immunoreactivity and biological activity is present in a human phaeochromocytoma. J Clin Endocrinol Metabol 56:134–138

    Google Scholar 

  • Berenyi MR, Singh G, Gloster ES, Davidson M, Woldenberg DH (1977) ACTH-producing phaeochromocytoma. Arch Pathol Lab Med 101:31–35

    Google Scholar 

  • Bishop AE, Polak JM, Facer P, Ferri G-L, Marangos PJ, Pearse AGE (1982) Neuron-specific enolase: a common marker for the endocrine cells and innervation of the gut and pancreas. Gastroenterology 83:902–915

    Google Scholar 

  • Bishop AE, Carlei F, Lee V, Trojanowski JQ, Marangos PJ, Dahl D, Polak JM (1985) Combined immunostaining of neurofilaments, neuron-specific enolase, GFAP and S-100. Histochemistry 82:93–97

    Google Scholar 

  • Bucsics A, Saria A, Lembeck F (1981) Substance P in the adrenal gland: origin and species distribution. Neuropeptides 1:329–341

    Google Scholar 

  • Carmichael SW, Winkler H (1985) The adrenal chromaffin cell. Sci Am 252:30–39

    Google Scholar 

  • Ch'ng JLC, Polak JM, Bloom SR (1985) Endocrine syndromes. In: Polak JM, Bloom SR (eds) Endocrine tumours - the pathobiology of regulatory peptide-containing tumours. Churchill Livingstone, Edinburgh, pp 264–280

  • Coghlan JP, Penschow JD, Hudson PJ, Niall HD (1984) Hybridisation histochemistry: use of recombinant DNA for tissue localisation of specific mRNA populations. Clin Exper Hyper-Theory Pract (A6) 1&2:63–78

    Google Scholar 

  • Coupland RE (1952) Prenatal development of abdominal paraaortic bodies in man. J Anat 86:357

    Google Scholar 

  • Cox BM (1982) Endogeneous opioid peptides: a guide to structures and terminology. Life Sci 31:1645–1658

    Google Scholar 

  • De Lellis RA, Tischler AS, Wolfe HJ (1984) Multidirectional differentiation in neuroendocrine neoplasms. J Histochem Cytochem 32:899–904

    Google Scholar 

  • Facer P, Bishop AE, Lloyd RV, Wilson BS, Hennessy RJ, Polak JM (1985) Chromogranin: a newly recognised marker for endocrine cells of the human gastrointestinal tract. Gastroenterology 89(6):1366–1373

    Google Scholar 

  • Gall JG, Pardue ML (1971) Nucleic acid hybridisation in cytological preparations. In: Grossman L, Moldave K (eds) Methods in Enzymology, vol XXI. Academic Press, New York, pp 470–480

    Google Scholar 

  • Gamse R, Saria A, Bucsics A, Lembeck F (1981) Substance P in tumours: phaeochromocytoma and carcinoid. Peptides 2 Suppl 2:275–280

    Google Scholar 

  • Grimelius L, Wilander E (1985) Silver impregnation and other non-immunocytochemical staining methods. In: Polak JM, Bloom SR (eds) Endocrine tumours - the pathobiology of regulatory peptide-containing tumours. Churchill Livingstone, Edinburgh, pp 95–115

  • Gulbenkian S, Wharton J, Hacker GW, Varndell IM, Bloom SR, Polak JM (1985) Co-localisation of neuropeptide tyrosine (NPY) and its C-terminal flanking peptide (C-PON). Peptides 6:1237–1243

    Google Scholar 

  • Hacker GW, Springall DR, Van Noorden S, Bishop AE, Grimelius L, Polak JM (1985a) The immunogold-silver staining method - a powerful tool in histopathology. Virchows Archiv A (Pathol Anat) 406:449–461

    Google Scholar 

  • Hacker GW, Polak JM, Springall DR, Tang S-K, Van Noorden S, Lackie P, Grimelius L, Adam H (1985b): Immunogold-silver staining (IGSS) - Eine Übersicht. Mikroskopie (Wien) 42:318–325

    Google Scholar 

  • Hacker GW, Polak JM, Springall DR, Ballesta J, Cadieux A, Gu J, Trojanowski JQ, Dahl D, Marangos P (1985c) Antibodies to neurofilament proteins and other brain peptides reveal the innervation of peripheral organs. Histochemistry 82:581–593

    Google Scholar 

  • Hamid HQ, Bishop AE, Sikri KL, Varndell IM, Bloom SR, Polak JM (1986) Immunocytochemical characterisation of 10 pancreatic tumours, associated with the glucagonoma syndrome, using antibodies to separate regions of the proglucagon molecule and other neuroendocrine markers. Histopathology 10:119–133

    Google Scholar 

  • Hassoun J, Monges G, Giraud P, Henry JF, Charpin C, Payan H, Toga M (1984) Immunohistochemical study of phaeochromocytomas- an investigation of methionine-enkephalin, vasoactive intestinal peptide, somatostatin, corticotropin, beta-endorphin and calcitonin in 16 tumours. Am J Pathol 114:56–63

    Google Scholar 

  • Hökfelt T, Elfvin LG, Schultzberg M, Said SI, Mutt V, Goldstein M (1977) Immunohistochemical evidence of vasoactive intestinal polypeptide-containing neurons and nerve fibres in sympathetic ganglia. Neuroscience 2:885–896

    Google Scholar 

  • Holgate C, Jackson P, Cowen P, Bird C (1983) Immunogold-silver staining: new method of immunostaining with enhanced sensitivity. J Histochem Cytochem 31:938–944

    Google Scholar 

  • Holst JJ (1983) Molecular heterogeneity of glucagon in normal subjects and in patients with glucagon-producing tumours. Diabetologia 24:359–365

    Google Scholar 

  • Hsi KL, Seidah NG, De Serres G, Chretien M (1982) Isolation and N-terminal sequence of a novel porcine anterior pituitary polypeptide: homology to proinsulin, secretion and Rous sarcoma virus transforming protein TVFV60. FEBS Lett 147:261–266

    Google Scholar 

  • Huang WM, Gibson SJ, Facer P, Gu J, Polak JM (1983) Improved section adhesion for immunocytochemistry using high molecular weight polymers of L-lysine as a slide coating. Histochemistry 77:275–297

    Google Scholar 

  • Hutchinson NJ, Langer-Safer PR, Ward DC, Hamkalo BA (1982) In situ hybridisation at the electron microscope level: hybrid detection by autoradiography and colloidal gold. J Cell Biology 95:609–618

    Google Scholar 

  • Kobayashi S, Okashi T, Fujita T, Nakao K, Yoshimasa T, Imura H, Mochizuki T, Yanaihara C, Yanaihara N, Verhofstad AA (1983) An immunocytochemical study of the co-storage of Met-enkephalin-Arg6-Gly7-Leu8 and Met-enkephalin-Arg6-Phe7 with adrenaline and/or noradrenaline in the adrenal chromaffin cells of the rat, dog and cat. Biomed Res 4:433–437

    Google Scholar 

  • Lawrence RB, Singer RH (1985) Quantitative analysis of in situ hybridization methods for the detection of actin gene expression. Nucleic Acids Res 13:1777–1799

    Google Scholar 

  • Lehto V-P, Virtanen I, Miettinen M, Dahl D, Kahri A (1983) Neurofilaments in adrenal and extra-adrenal phaeochromocytoma. Demonstration using immunofluorescence microscopy. Arch Pathol Lab Med 107:492–494

    Google Scholar 

  • Linnoila RI, Diaugustine RP, Hervonen A, Miller RJ (1980) Distribution of (met5) and (leu5)-enkephalin, VIP- and substance P-like immunoreactivities in human adrenal glands. Neuroscience 5:2247–2259

    Google Scholar 

  • Liu TH, Chen GS, Nan C, He ZG (1984) Clinico-pathological and ultrastructural characteristics of phaeochromocytoma. An analysis of 55 cases. Pathol Res Pract 178:355–362

    Google Scholar 

  • Livett BG, Day R, Elde RP, Howe PR (1982) Co-storage of enkephalins and adrenaline in the bovine adrenal medulla. Neuroscience 7:1323–1326

    Google Scholar 

  • Lloyd RV, Blaivas M, Wilson BS (1985) Distribution of chromogranin and S-100 protein in normal and abnormal adrenal medullary tissues. Arch Pathol Lab Med 109:633–635

    Google Scholar 

  • Lundberg JM, Hamberger B, Schultzberg M, Hökfelt T, Granberg PO, Efendic S, Terenius L, Goldstein M, Luft R (1979) Enkephalin- and somatostatin-like immunoreactivities in human adrenal medulla and phaeochromocytoma. Proc Natl Acad Sci USA 76:4079–4083

    Google Scholar 

  • Lundberg JM, Rokaeus A, Hökfelt T (1982) Neurotensin-like immunoreactivity in the preganglionic sympathetic nerves and in the adrenal medulla of cat. Acta Physiol Scand 114:153–155

    Google Scholar 

  • Majane EA, Alho H, Kataoka Y, Lee CH, Yang HYT (1985) Neuropeptide Y in bovine adrenal glands: distribution and characterisation. Endocrinology 117:1162–1168

    Google Scholar 

  • Melander T, Hökfelt T, Rökaeus A, Fahrenkrug J, Tatemoto K, Mutt V (1985) Distribution of galanin-like immunoreactivity in the gastrointestinal tract of several mammalian species. Cell Tissue Res 239:253–270

    Google Scholar 

  • Pearse AGE (1972) Histochemistry. Theoretical and applied, ed 3, vol 2, Churchill Livingstone, Edinburgh

  • Pearse AGE, Polak JM (1975) Bifunctional reagents as vapour and liquid phase fixatives for immunocytochemistry. Histochem J 7:179–186

    Google Scholar 

  • Polak JM, Bloom SR (1985) Pathology of peptide-producing neuroendocrine tumours. Br J Hosp Med Feb.:78–88

  • Pollard K, Wing E (1984) Malignant phaeochromocytoma in children: a case with neurofibromatosis and review of the literature. Eur Paediatr Haematol Oncol 1:152–165

    Google Scholar 

  • Rode J, Dhillon AP, Doran JF, Jackson P, Thompson RJ (1985) PGP 9.5, a new marker for human neuroendocrine tumours. Histopathology 9:147–158

    Google Scholar 

  • Sano T, Saito H, Inaba H, Hizawa K, Saito S, Yamanoi A, Mizunuma Y, Matsumura M, Yuasa M, Hiraishi K (1983) Immunoreactive somatostatin and vasoactive intestinal polypeptide in adrenal phaeochromocytoma. Cancer 52:282–289

    Google Scholar 

  • Saria A, Wilson SP, Molnar A, Viveros OH, Lembeck F (1980) Substance P and opiate-like peptides in human adrenal medulla. Neuroscience Lett 20:195–200

    Google Scholar 

  • Schmechel D, Marangos PJ, Brightman M (1978) Neuron specific enolase is a molecular marker for peripheral and central neuroendocrine cells. Nature 276:834–836

    Google Scholar 

  • Schultzberg M, Lundberg JM, Hökfelt T, Terenius L, Brandt J, Elde RP, Goldstein M (1978) Enkephalin-like immunoreactivity in gland cells and nerve terminals of the adrenal medulla. Neuroscience 3:1168–1186

    Google Scholar 

  • Seidah NG, Hsi KL, De Serres G, Rochemont J, Hamelin J, Antakly T, Cantin M, Chretien M (1983) Isolation and N-terminal sequence of a highly conserved human and pituitary protein belonging to a new superfamily. Immunocytochemical localisation in pars distalis and pars nervosa of the pituitary and in the supraoptic nucleus of the hypothalamus. Arch Biochem Biophys 225:525–534

    Google Scholar 

  • Shivers BD, Harlan RE, Pfaff DW, Schachter BS (1986) Combination of immunocytochemistry and in situ hybridisation in the same tissue section of rat pituitary. J Histochem Cytochem 34:39–43

    Google Scholar 

  • Skofitsch G, Jacobowitz DM (1985) Immunohistochemical mapping of galanin-like neurons in the rat central nervous system. Peptides 6:509–546

    Google Scholar 

  • Springall DR, Hacker GW, Grimelius L, Polak JM (1984) The potential of the immunogold-silver staining technique for paraffin sections. Histochemistry 81:603–608

    Google Scholar 

  • Sternberger LA (1979) Immunocytochemistry, ed 2. John Wiley and Sons, New York

    Google Scholar 

  • Suda T, Tozawa F, Tachibana S, Demura H, Shizume K, Sasaki A, Mouri T, Miura Y (1983) Multiple forms of immunoreactive dynorphin in human pituitary and phaeochromocytoma. Life Sci 32:865–870

    Google Scholar 

  • Suzuki H, Ghatei MA, Williams SJ, Uttenthal LO, Facet P, Bishop AE, Polak JM, Bloom SR (1986) Production of pituitary protein 7B2 immunoreactivity by endocrine tumours and its possible diagnostic value. J Clin Endocrinol Metabol 63:758–765

    Google Scholar 

  • Tapia FJ, Polak JM, Barbosa AJA, Bloom SR, Marangos PJ, Dermody C, Pearse AGE (1981) Neuron-specific enolase is produced by neuroendocrine tumours. Lancet i:808–811

    Google Scholar 

  • Tatemoto K, Rokaeus A, Jornvall H, McDonald TJ, Mutt V (1983) Galanin - a novel biologically active peptide from porcine intestine. Febs Letts 164:124–128

    Google Scholar 

  • Terenghi G, Polak JM, Varndell IM, Lee YC, Wharton J, Bloom SR (1983) Neurotensin-like immunoreactivity in a subpopulation of noradrenaline containing cells of the cat adrenal gland. Endocrinology 112:226–233

    Google Scholar 

  • Thompson RJ, Doran JF, Jackson P, Dhillon AP, Rode J (1983) PGP 9.5 a new marker for vertebrate neurones and neuroendocrine cells. Brain Res 278:224–228

    Google Scholar 

  • Tischler AS, Lee YC, Perlman RL, Costopoulos D, Slayton VW, Bloom SR (1984) Production of ectopic vasoactive intestinal polypeptide-like and neurotensin-like immunoreactivity in human phaeochromocytoma cell cultures. J Neurosci 4:1398–1404

    Google Scholar 

  • Varndell IM, Tapia FJ, De Mey J, Rush RA, Bloom SR, Polak JM (1981) Electronimmunocytochemical localisation of enkephalin-like material in catecholamine-containing cells of the carotid body, the adrenal medulla and in phaeochromocytomas of man and other mammals. J Histochem Cytochem 30:682–690

    Google Scholar 

  • Varndell IM, Polak JM, Sikri KL, Minth CD, Bloom SR, Dixon JE (1984a) Visualisation of messenger RNA directing peptide synthesis by in situ hybridisation using a novel single-stranded cDNA probe. Potential for the investigation of gene expression and endocrine cell activity. Histochemistry 81:597–601

    Google Scholar 

  • Varndell IM, Polak JM, Allen JM, Terenghi G, Bloom SR (1984b) Neuropeptide tyrosine (NPY) in norepinephrine-containing cells of the mammalian adrenal gland. Endocrinology 114:1460–1462

    Google Scholar 

  • Viale G, Dell'Orto P, Moro E, Cozzaglio L, Coggi G (1985) Vasoactive intestinal polypeptide-, somatostatin- and calcitonin-containing adrenal phaeochromocytoma associated with the watery diarrhea (WDHA) syndrome. Cancer 55:1099–1106

    Google Scholar 

  • Viveros OH, Diliberto EJ, Hazum E, Chang KG (1979) Opiate-like materials in the adrenal medulla: evidence for storage and secretion with catecholamines. Mol Pharmacol 16:1101–1108

    Google Scholar 

  • Viveros OH, Diliberto EJ, Hazum E, Chang KJ (1980) Enkephalins as possible adrenomedullary hormones: storage, secretion and regulation of synthesis. In: Costa E, Trabucchi M (eds) Neural peptides and neuronal communication. Adv Biochem Psychopharmacol, Raven Press, New York, vol 22, pp 191–204

    Google Scholar 

  • Wilson SP, Cubeddu LY, Chang K-J, Viveros OH (1981a) Metenkephalin in human phaeochromocytoma tumours. Neuropeptides 1:273–281

    Google Scholar 

  • Wilson SP, Slepetics R, Chang KJ, Kirshner N, Viveros OH (1981b) Differential secretion of opioid peptides and catecholamines from cultured cells of a human phaeochromocytoma tumour. Life Sci 29:2257–2264

    Google Scholar 

  • Yoshimasa T, Nakao K, Oki S, Tanaka I, Nakai Y, Imura H (1981) Presence of dynorphin-like immunoreactivity in phaeochromocytomas. J Clin Endocrinol Metabol 52:213–214

    Google Scholar 

  • Yoshimasa T, Nakao K, Li S, Ikeda Y, Suda M, Sakamoto M, Imura H (1983) Plasma methionine-enkephalin and leucine-enkephalin in normal subjects and patients with phaeochromocytoma. J Clin Endocrinol Metabol 57:706–712

    Google Scholar 

  • Yoshimasa T, Nakao K, Sakamoto M, Suda M, Morii N, Ikeda Y, Ishihara T, Manno M, Hamada S, Shimbo S, Mori T, Yoshimi T, Matsukura S, Imura H (1984) Demonstration and characterization of immunoreactive methionine-enkephalin, leucine-enkephalin, methionine-enkephalin-Arg6-Gly7-Leu8 and methionine-enkephalin-Arg6-Phe7 in human phaeochromocytoma. Acta Endocrinol 107:261–267

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hacker, G.W., Bishop, A.E., Terenghi, G. et al. Multiple peptide production and presence of general neuroendocrine markers detected in 12 cases of human phaeochromocytoma and in mammalian adrenal glands. Vichows Archiv A Pathol Anat 412, 399–411 (1988). https://doi.org/10.1007/BF00750574

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00750574

Key words

Navigation