Skip to main content
Log in

Layer VII and the gray matter trajectories of corticocortical axons in rats

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

The trajectory of long distance intrahemispheric corticocortical axons has been investigated using the anterograde fluorescent axonal tracer fluororuby. Most axons of this kind were found to travel through the gray matter of layers VI and VII rather than in the white matter. The cell-sparse zone immediately superficial to layer VII contains a dense aggregate of longitudinally directed axons. Corticocortical axons traveling in the mediolateral plane also utilize the deep gray matter predominately. Layer VII neurons are persistent remnants of the subplate in rats. Based on our retrograde labeling results, they are involved in long distance as well as local corticocortical connections. Layer VII neurons are often labeled in a more continuous pattern after cortical injections of retrograde tracers than neurons of layers II, III and V, which are labeled in a patchy manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akers RM, Killackey HP (1978) Organization of corticocortical connections in the parietal cortex of the rat. J Comp Neurol 181: 513–538

    Google Scholar 

  • Allendoerfer KL, Shatz CJ (1994) The subplate, a transient neo-cortical structure: its role in the development of connections between thalamus and cortex. Annu Rev Neurosci 17: 185–218

    Google Scholar 

  • Berendse HW, Groenewegen HJ (1991) Restricted cortical termination fields of the midline and intralaminar thalamic nuclei in the rat. Neuroscience 42: 73–102

    Google Scholar 

  • Burton H (1985) Second somatosensory cortex and related areas. In: Peters A, Jones EG (eds) Cerebral cortex, vol 5. Sensory-motor areas and aspects of cortical connectivity. Plenum Press, New York, pp 31–98

    Google Scholar 

  • Cajal S, Ramón Y (1892) El nuevo concepto de la histologia de los centros nerviosos. Rev Ciencias Med 18: 457–476

    Google Scholar 

  • Cavada C, Goldman-Rakic PS (1989) Posterior parietal cortex in rhesus monkey. II. Evidence for segregated corticortical networks linking sensory and limbic areas with the frontal lobe. J Comp Neurol 287: 422–445

    Google Scholar 

  • DeFilipe J, Jones EG (1988) Cajal on the cerebral cortex. Oxford University Press, Oxford, New York

    Google Scholar 

  • DeFilipe J, Conley M, Jones EG (1986) Long-range focal collateralization of axons arising from corticocortical cells in monkey sensory-motor cortex. J Neurosci 6: 3749–3766

    Google Scholar 

  • Divac I, Marinkovic S, Mogensen J, Schwerdtfeger W, Regidor J (1987) Vertical ascending connections in the isocortex. Anat Embryol 175: 443–455

    Google Scholar 

  • Goldman PS, Nauta WJH (1977) Columnar distribution of corticocortical fibers in the frontal association, limbic, and motor cortex of the developing rhesus monkey. Brain Res 122: 393–413

    Google Scholar 

  • Herkenham, M (1979) The afferent and efferent connections of the ventromedial thalamic nucleus in the rat. J Comp Neurol 183: 487–518

    Google Scholar 

  • Hess DT, Merker BH (1983) Technical modifications of Gallyas' silver stain for myelin. J Neurosci Methods 8: 95–97

    Google Scholar 

  • Jacobson S (1965) Intralaminar, interlaminar, callosal, and thalamocortical connections in frontal and parietal areas of the albino rat cerebral cortex. J Comp Neurol 124: 131–146

    Google Scholar 

  • Jones EG (1986) Connectivity of the primate sensory-motor cortex. In: Peters A, Jones EG (eds) Cerebral cortex, vol 5. Sensory-motor areas and aspects of cortical connectivity. Plenum Press, New York, pp 113–183

    Google Scholar 

  • Jones EG, Coulter JD, Hendry SHC (1978) Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys. J Comp Neurol 181: 291–348

    Google Scholar 

  • Kostovic I, Rakic P (1990) Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J Comp Neurol 297: 441–470

    Google Scholar 

  • Krieg WJS (1946) Connections of the cerebral cortex. I. The albino rat. B. Structure of the cortical areas. J Comp Neurol 84: 277–323

    Google Scholar 

  • Krieg WJS (1963) Connections of the cerebral cortex. Wendell Krieg, Evanston, Illinois

    Google Scholar 

  • Leichnetz GR, Astruc J (1975) Efferent connections of the orbitofrontal cortex in the marmoset monkey (Saguinus oedipus). Brain Res 84: 169–180

    Google Scholar 

  • Lund JS, Fitzpatrick D, Humphrey AL (1985) The striate visual cortex of the tree shrew. In: Peters A, Jones EG (eds) Cerebral cortex, vol 3. Visual cortex. Plenum Press, New York, pp 157–205

    Google Scholar 

  • Marin-Padilla M (1978) Dual origin of the mammalian cerebral neocortex and evolution of the cortical plate. Anat Embryol 152: 109–126

    Google Scholar 

  • Mascagni F, McDonald AJ, Coleman JR (1993) Corticoamygdaloid and corticocortical projections of rat temporal cortex: a Phaseolus vulgaris leucoagglutinin study. Neuroscience 57: 697–715

    Google Scholar 

  • McGeorge AJ, Faull RLM (1989) The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience 29: 503–537

    Google Scholar 

  • Miller MW, Vogt BA (1984) Direct connections of rat visual cortex with sensory, motor, and association cortices. J Comp Neurol 226: 184–202

    Google Scholar 

  • Pandya DN, Yeterian EH (1985) Architecture and connections of cortical association areas. In: Peters A, Jones EG (eds) Cerebral cortex, vol 4. Association and auditory cortices. Plenum Press, New York, pp 3–61

    Google Scholar 

  • Pearlman AL (1985) The visual cortex of the normal mouse and the reeler mutant. In: Peters A, Jones EG (eds) Cerebral cortex, vol 3. Visual cortex. Plenum Press, New York, pp 1–18

    Google Scholar 

  • Peters A (1985) The visual cortex of the rat. In: Peters A, Jones EG (eds) Cerebral cortex, vol 3. Visual cortex. Plenum Press, New York, pp 19–80

    Google Scholar 

  • Reep RL, Goodwin GS (1988) Layer VII of rodent cerebral cortex. Neurosci Lett 90: 15–20

    Google Scholar 

  • Reep RL, Corwin JV, Hashimoto A, Watson RT (1987) Efferent connections of the rostral component of medial agranular cortex in rats. Brain Res Bull 19: 203–221

    Google Scholar 

  • Reep RL, Goodwin GS, Corwin JV (1990) Topographic organization in the corticocortical connections of medial agranular cortex in rats. J Comp Neurol 294: 262–280

    Google Scholar 

  • Reep RL, Chandler HC, King V, Corwin JV (1994) Rat posterior parietal cortex: topography of corticocortical and thalamic connections. Exp Brain Res 100: 67–84

    CAS  PubMed  Google Scholar 

  • Rockland KS (1992) Configuration, in serial reconstruction, of individual axons projecting from area V2 to V4 in the macaque monkey. Cereb Cortex 2: 353–374

    Google Scholar 

  • Rockland KS (1995) Morphology of individual axons projecting from area V2 to MT in the macaque. J Comp Neurol 355: 15–26

    Google Scholar 

  • Romanski LM, LeDoux JE (1993) Information cascade from primary auditory cortex to the amygdala: corticocortical and corticoamygdaloid projections of temporal cortex in the rat. Cereb Cortex 3: 515–532

    Google Scholar 

  • Rose M (1928) Die Inselrinde des Menschen und der Tiere. J Psychol Neurol 37: 467–624

    Google Scholar 

  • Rose M (1929) Cytoarchitektonischer Atlas der Grosshirnrinde der Maus. J Psychol Neurol 40: 1–51

    Google Scholar 

  • Rosenquist AC (1985) Connections of visual cortical areas in the cat. In: Peters A, Jones EG (eds) Cerebral cortex, vol 3. Visual cortex. Plenum Press, New York, pp 81–117

    Google Scholar 

  • Schmued LC (1990) A rapid, sensitive histochemical stain for myelin in frozen brain sections. J Histochem Cytochem 38: 717–720

    Google Scholar 

  • Schwark HD, Jones EG (1989) The distribution of intrinsic cortical axons in area 3b of cat primary somatosensory cortex. Exp Brain Res 78: 501–513

    Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1988) Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior. J Neurosci 8: 4049–4068

    CAS  PubMed  Google Scholar 

  • Sukekawa K (1988) Interconnections of the visual cortex with the frontal cortex in the rat. J Hirnforsch 29: 83–93

    Google Scholar 

  • Torrealba F, Olavarria J, Carrasco MA (1984) Cortical connections of the anteromedial extrastriate visual cortex in the rat. Exp Brain Res 56: 543–549

    Google Scholar 

  • Valverde F, Facal-Valverde MV (1988) Postnatal development of interstitial (subplate) cells in the white matter of the temporal cortex of kittens: a correlated Golgi and electron microscopic study. J Comp Neurol 269: 168–192

    Google Scholar 

  • Valverde F, Facal-Valverde M, Santacana M, Heredia M (1989) Development and differentiation of early generated cells of sublayer VIb in the somatosensory cortex of the rat: a correlated golgi and autoradiographic study. J Comp Neurol 290: 118–140

    Google Scholar 

  • Valverde F, López-Mascaraque L, Santacana M, De Carlos JA (1995) Persistence of early-generated neurons in the rodent subplate: assessment of cell death in neocortex during the early postnatal period. J Neurosci 15: 5014–5024

    Google Scholar 

  • Van Eden CG, Lamme VAF, Uylings HBM (1992) Heterotopic cortical afferents to the medial prefrontal cortex in the rat. A combined retograde and anterograde tracer study. Eur J Neurosci 4: 77–97

    Google Scholar 

  • Van Essen DC (1985) Functional organization of primate visual cortex. In: Peters A, Jones EG (eds) Cerebral cortex, vol 3. Visual cortex. Plenum Press, New York, pp 259–329

    Google Scholar 

  • Van Hoesen GW, Pandya DN, Butters N (1975) Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. II. Frontal lobe afferents. Brain Res 95: 25–38

    Google Scholar 

  • Vaz Ferreira A (1951) The cortical areas of the albino rat studied by silver impregnation. J Comp Neurol 95: 177–243

    Google Scholar 

  • Vogt BA (1985) Cingulate cortex. In: Peters A, Jones EG (eds) Cerebral cortex, vol 4. Association and auditory cortices. Plenum Press, New York, pp 89–149

    Google Scholar 

  • Vogt BA, Miller MW (1983) Cortical connections between rat cin-gulate cortex and visual, motor, and postsubicular cortices. J Comp Neurol 216: 192–210

    Google Scholar 

  • Wagner GP, Eins S, Wolff JR (1986) Tangential organization of the infragranular fiber plexus in rat cerebral cortex. Acta Anat 126: 1–12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandevelde, I.L., Duckworth, E. & Reep, R.L. Layer VII and the gray matter trajectories of corticocortical axons in rats. Anat Embryol 194, 581–593 (1996). https://doi.org/10.1007/BF00187471

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00187471

Key words

Navigation