Skip to main content
Log in

Scanning microfluorometry in intravital microvascular research

  • Original Papers
  • Published:
Research in Experimental Medicine

Summary

Our own development of fluorometric scanning techniques in intravital microscopy of the microcirculation is described. Very tiny amount of fluorometric substances are detected with a high temporal and locational resolution. The everted small intestinal mesentery of the rat serves as a model. We have given a detailed description of the microscopes used, the optical systems, the conditions of measurement of the microfluorometry, the scanning techniques and the evaluation of the measurement data. The present state of technical development detects 10−12 g of a fluorochromed plasma protein in 8 ms in a measurement field of 2 µm2. The four-digit measurement data of a scanning line of 200 µm length in 0.25 µm locational resolution are registered in about 2 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker CH, Nastuk WL (1986) Microcirculatory technology. Academic Press, Orlando London

    Google Scholar 

  2. Bloch EH (1963) A method for studying the dynamics of transcapillary transfer quantitatively at the microscopic level in situ in living organs. Angiology 14:97–106

    Google Scholar 

  3. Curry FE, Joyner WL, He P (1987) Modulation of transcapillary exchange in individually perfused microvessels. In: Tsuchiya M et al. (eds) Microcirculation — an update, vol 1. Elsevier, Amsterdam, pp 105–108

    Google Scholar 

  4. Friedman JJ, Witte S (1986) The radial protein concentration profile in the interstitial space of the rat ileal mesentery. Microvasc Res 31:277–287

    PubMed  Google Scholar 

  5. Gahm T (1983) Quantitative bildanalytische Untersuchung der Wanddurchlässigkeit von Blutkapillargefäßen mit Hilfe der Fluoreszenzmikroskopie. Diplom-Arbeit, Universität Stuttgart

  6. Gahm T, Reinhardt ER, Witte S (1984) Analysis of the wall permeability of blood vessels in the rat mesentery. Res Exp Med 184:1–15

    Google Scholar 

  7. Gahm T, Witte S (1986) Measurement of the optical thickness of transparent tissue layers. J Microsc 141:101–110

    PubMed  Google Scholar 

  8. Gerlowski LE, Jain RK (1985) Effect of hyperthermia on microvascular permeability to macromolecules in normal and tumor tissues. Int J Microcirc Clin Exp 4:363–372

    PubMed  Google Scholar 

  9. Kaley G, Altura BM (1977) Microcirculation, vol. 1. University Park Press, Baltimore London Tokyo

    Google Scholar 

  10. Ley K, Arfors K-E (1986) Segmental differences of microvascular permeability for FITC-dextrans measured in the hamster cheek pouch. Microvasc Res 31:84–99

    PubMed  Google Scholar 

  11. Meesen H (1977) Microcirculation. Hb Allg Pathol, Bd 3/7. Springer, Berlin Heidelberg New York

    Google Scholar 

  12. Nairn RC (1976) Fluorescent protein tracing, 4th edn. Churchill Livingstone, Edinburgh London New York

    Google Scholar 

  13. Nakamura Y, Wayland H (1975) Macromolecular transport in the cat mesentery. Microvasc Res 9:1–21

    PubMed  Google Scholar 

  14. Papenfuß HD, Schwarzmann P, Sträßle R, Witte S (1986) Intravital microscopy and theoretical analysis of interstitial transport of fluorescent macromolecules near vascular walls of rat mesentery. Poster: 14th Int Conf Eur Soc Microcirc, Linköping

  15. Piller H (1977) Microscope photometry. Springer, Berlin Heidelberg New York

    Google Scholar 

  16. Taylor AE, Granger DN (1984) Exchange of macromolecules across the microcirculation. In: Renkin EM, Michel CC (eds) Handbook of physiology: Cardiovascular system, vol 4. American Physiologic Society, Baltimore, pp 467–520

    Google Scholar 

  17. Thaer AA, Sernetz M (1973) Fluorescence techniques in cell biology. Springer, Berlin Heidelberg New York

    Google Scholar 

  18. Wayland H (1982) A physicist looks at the microcirculation. Microvasc Res 23:139–170

    PubMed  Google Scholar 

  19. Wiederhielm CA (1966) Transcapillary and interstitial transport phenomena in the mesentery. Fed Proc 25:1789–1798

    PubMed  Google Scholar 

  20. Witte S (1957) Eine neue Methode zur Untersuchung der Capillarpermeabilität. Z Ges Exp Med 129:181–192

    PubMed  Google Scholar 

  21. Witte S (1957) Fluoreszenzmikroskopische Untersuchungen über die Capillarpermeabilität. Z Ges Exp Med 129:358–367

    PubMed  Google Scholar 

  22. Witte S (1963) Flow pattern pertaining to vascular permeability as observed by fluorescence vital microscopy. In: Copley AL (ed) Proc IVth Int Congr Rheol, Providence, RI, pt 4: Symposium on biorheology. Wiley and Sons, New York London Sydney, pp 451–458

    Google Scholar 

  23. Witte S (1967) Methodische Möglichkeiten zum Studium der Gefäßpermeabilität durch intravitale Fluoreszenzmikroskopie. Klin Wochenschr 45:961–965

    PubMed  Google Scholar 

  24. Witte S (1975) Microscopic techniques for the in situ characterization of concentration of tissue components and penetrating molecules. Biorheology 12:173–180

    PubMed  Google Scholar 

  25. Witte S (1979) Microphotometric techniques in intravital microcirculatory studies. J Microsc 116:373–384

    PubMed  Google Scholar 

  26. Witte S (1980) Quantitative vitalmikroskopische Befunde über VF (vascular factor). Quad Coagul Argom Connessi 18:7–70

    Google Scholar 

  27. Witte S (1980) Concentration of macromolecules in the tissue and lymphatics. In: 28th Int Congr Physiol Sci, Budapest. Adv Physiol Sci 7:201–210

    Google Scholar 

  28. Witte S (1981) Transkapillärer Austausch von Mikro- und Makromolekülen. Arzneimittelforsch 31:2020–2028

    PubMed  Google Scholar 

  29. Witte S (1983) Intra- und extravasale Verteilung von Gerinnungsproteinen. Wechselwirkung mit der Gefäßwand. Behring Inst Mitt 73:13–28

    PubMed  Google Scholar 

  30. Witte S (1984) The role of blood coagulation in capillary permeability. Vital microscopic contributions. Biorheology 21:121–133

    PubMed  Google Scholar 

  31. Witte S (1986) Thrombin as a permeability influencing agent. Proc 6th Bodensee Symp Microcirc, Heidelberg. Progr Appl Microcirc 12:212–216

    Google Scholar 

  32. Witte S, Hagel F, Schuler H (1971) Eine Objektkammer für die intravitale Ultraviolett-Mikrospektrophotometrie. Z Ges Exp Med 154:334–338

    Google Scholar 

  33. Witte S, Zenzes-Geprägs S (1976) The affinity of fibrinogen to the vessel wall as proved in situ. 9th Eur Conf Microcirc, Antwerp. Bibl Anat 16:279–281

    Google Scholar 

  34. Witte S, Zenzes-Geprägs S (1977) Extravascular protein measurements in vivo and in situ by ultramicrospectrophotometry. Microvasc Res 13:225–231

    PubMed  Google Scholar 

  35. Witte S, Zenzes-Geprägs S (1978) Die Beeinflussung des in situ gemessenen extravasalen Proteingehaltes durch Änderung der Gefäßpermeabilität. Res Exp Med (Berl) 172:83–96

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft and the Fritz Thyssen-Stiftung

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witte, S. Scanning microfluorometry in intravital microvascular research. Res. Exp. Med. 189, 229–239 (1989). https://doi.org/10.1007/BF01852254

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01852254

Key words

Navigation