Skip to main content
Log in

Fine structure of the stalk of an isocrinid sea lily (Metacrinus rotundus) (Echinodermata, Crinoidea)

  • Published:
Zoomorphology Aims and scope Submit manuscript

Summary

Sea lilies of the order Isocrinida (Metacrinus rotundus) were dredged from Sagami Bay, Japan, and their stalks were studied by transmission electron microscopy. New contributions to stalk histology are: an exact description of the different cell types in the stereom spaces; a demonstration of the haemal channel; and the discovery of (1) coelomic nerves, (2) collateral stalk nerves and (3) nerve tracts running with the aboral extension of the axial organ. Within the stalk, there is no structure derived from the axial sinus (=axocoel), and the widely accepted homology between the crinoid stalk and the larval asteroid stalk is thus open to serious question. The stalk has collagenous ligaments of two main types (intercolumnal ligaments and peripheral through-going ligaments); however, there are no central through-going ligaments comparable to those in stalks of larval feather stars and of bourgueticrinid sea lilies. The absence of muscles or other cells specialized for contractility indicates that the stalk of isocrinid sea lilies cannot bend actively. The cirri, which project from the stalk of M. rotundus, contain no muscle cells; however, the epithelial cells lining the oral and aboral coeloms of each cirrus contain a presumed contractile apparatus that is a bundle of 5 nm cytoplasmic filaments oriented parallel to each other and to the long axis of the cirrus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agassiz A (1888) Three cruises of the United States Coast and Geodetic Survey steamer “Blake” in the Gulf of Mexico, in the Caribbean Sea, and along the Atlantic coast of the United States from 1877 to 1880 (Vol II). Bull Mus Comp Zool Harv Univ 15:1–200

    Google Scholar 

  • Bather FA (1900) The echinoderma. In: Lankester ER (ed) A treatise on zoology, part III. Adam and Charles Black, London, pp 1–344

    Google Scholar 

  • Bather FA (1917) British fossil crinoids, 9. Balanocrinus of the London clay. Ann Mag Nat Hist (ser 8) 20:385–407

    Google Scholar 

  • Beklemishev VN (1969) Principles of comparative anatomy of invertebrates, vol 1. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Breimer A, Webster GD (1975) A further contribution to the paleoecology of fossil stalked crinoids. Proc K Ned Akad Wet Ser B 78:149–167

    Google Scholar 

  • Bury H (1888) The early stages in the development of Antedon rosacea. Philos Trans R Soc London Ser B 179:257–301

    Google Scholar 

  • Carpenter PH (1878) On some points in the anatomy of Pentacrinus and Rhizocrinus. J Anat Physiol 12:35–53

    Google Scholar 

  • Carpenter PH (1884) Report upon the Crinoidea collected during the voyage of HMS Challenger during the years 1873–1876. The stalked crinoids. Challenger Reports, Zoology 11:1–442

    Google Scholar 

  • Carpenter PH (1885) On three new species of Metacrinus. Trans Linn Soc Lond 2:435–446

    Google Scholar 

  • Clark HL (1915) The comatulids of Torres Strait: with special reference to their habits and reactions. Pap Tortugas Lab 8:97–125

    Google Scholar 

  • Conan G, Roux M, Sibuet M (1981) A photographic survey of a population of the stalked crinoid Diplocrinus (Annacrinus) wyvillethomsoni (Echinodermata) from the bathyal slope of the Bay of Biscay. Deep Sea Res A 28:441–453

    Google Scholar 

  • Ellis J (1762) An account of an encrinus, or starfish, with a jointed stem, taken on the coast of Barbadoes, which explains to what kind of animal those fossils belong, called starstones, asteriae, and astropodia, which have been found in many parts of this kingdom. Philos Trans R Soc London 52:357–365

    Google Scholar 

  • Grimmer JC, Holland ND, Kubota H (1984a) The fine structure of the stalk of the pentacrinoid larva of a feather star, Comanthus japonica (Echinodermata: Crinoidea). Acta Zool Stockholm 65:41–58

    Google Scholar 

  • Grimmer JC, Holland ND, Messing CG (1984b) Fine structure of the stalk of the bourgeuticrinid sea lily Democrinus conifer (Echinodermata: Crinoidea). Mar Biol 81:163–176

    Google Scholar 

  • Grobben K (1923) Theoretische Erörterungen betreffend die phylogenetische Ableitung der Echinodermen. Sitzungsber Akad Wiss Wien Mathe Naturwiss Kl Abt 1:132:263–290

    Google Scholar 

  • Guettard M (1761) Mémoire sur les encrinites et les pierres étoilées dans lequel on traitera aussi des entroques, etc. Mem Acad R Sci Paris (presented in 1755; published in 1761):224–263

  • Heider K (1912) Über Organverlagerungen bei der Echinodermen-Metamorphose. Verh Dtsch Zool Ges 22:239–251

    Google Scholar 

  • Holland ND, Grimmer JC (1981) Fine structure of the cirri and a possible mechanism for their motility in stalkless crinoids (Echinodermata). Cell Tissue Res 214:207–217

    Google Scholar 

  • Holland ND, Nealson KH (1978) The fine structure of the echinoderm cuticle and the subcuticular bacteria of echninoderms. Acta Zool Stockholm 59:169–185

    Google Scholar 

  • Hyman LH (1959) The invertebrates, V. Smaller coelomate groups. McGraw-Hill, New York

    Google Scholar 

  • Jefferies RPS (1968) The subphylum Calcichordata (Jefferies 1967), primitive fossil chordates with echinoderm affinities. Bull Br Mus Nat Hist Geol 16:243–339

    Google Scholar 

  • Kirk E (1911) The structure and relationships of certain eleutherozoic Pelmatozoa. Proc US Nat Mus 41:1–137

    Google Scholar 

  • Klikushin VG (1979) Microstructural features of isocrinid stems. Paleontol Zh 1:88–96

    Google Scholar 

  • Lang A (1894) Lehrbuch der vergleichenden Anatomie der wirbellosen Thiere. Gustav Fischer, Jena

    Google Scholar 

  • Luft JH (1971) Ruthenium red and violet. I. Chemistry, purification, methods of use for electron microscopy and mechanism of action. Anat Rec 171:347–368

    Google Scholar 

  • MacBride EW (1896) The development of Asterina gibbosa. Q J Microsc Sci 38:339–411

    Google Scholar 

  • Macurda DB, Meyer DL (1974) Feeding posture of modern stalked crinoids. Nature 247:394–396

    Google Scholar 

  • Macurda DB, Meyer DL (1975) The microstructure of the crinoid endoskeleton. Univ Kansas Paleontol Contrib Pap 74:1–22

    Google Scholar 

  • Macurda DB, Meyer DL (1976) The identification and interpretation of stalked crinoids (Echinodermata) from deep-water photographs. Bull Mar Sci 26:205–215

    Google Scholar 

  • Meyer DL, LaHaye CA, Holland ND, Arneson AC, Strickler JR (1984) Time-lapse cinematography of feather stars (Echinodermata: Crinoidea) on the Great Barrier Reef, Australia: demonstrations of posture changes, locomotion, spawning and possible predation by fish. Mar Biol 78:179–184

    Google Scholar 

  • Müller J (1843) Über den Bau des Pentacrinus caput medusae. Abh königl Akad Wiss Berlin aus dem Jahre 1841 (Part 1):177–248

    Google Scholar 

  • Nichols D (1962) Echinoderms. Hutchinson Univ Library, London

    Google Scholar 

  • Perrier E (1888) Sur la collection d'étoiles de mer recueillie par la Commission scientifique du cap Horn. CR Acad Sci Paris 106:763–765

    Google Scholar 

  • Rasmussen HW (1977) Function and attachment of the stem in Isocrinidae and Pentacrinidae: review and interpretation. Lethaia 10:51–57

    Google Scholar 

  • Reichensperger A (1905) Zur Antomie von Pentacrinus decorus Wy. Th. Bull Mus Comp Zool Harv Univ 46:169–200

    Google Scholar 

  • Roux M (1970) Introduction à l'étude des microstructures des tiges de crinoïdes. Geobios 3:79–98

    Google Scholar 

  • Roux M (1974) Les principaux modes d'articulation des ossicules du squelette des crinoïdes pédonculés actuels. Observations microstructurales et conséquences pour l'interprétation des fossiles. CR Acad Sci Paris D 278:2015–2018

    Google Scholar 

  • Roux M (1977) The stalk joints of recent Isocrinidae (Crinoidea). Bull Br Mus Nat Hist Zool 32:45–64

    Google Scholar 

  • Sars M (1868) Mémoires pour servir à la connaissance des crinoïdes vivants. I. Du Rhizocrinus lofotensis M. Sars, nouveau genre vivant des crinoïdes pédicellés, dits lis de mer. Brøgger and Christie, Christiania, pp 1–46

    Google Scholar 

  • Seeliger O (1892) Studien zur Entwicklungsgeschichte der Crinoiden (Antedon rosacea). Zool Jahrb Abt Anat Ontog Tiere 6:161–441

    Google Scholar 

  • Sevastopulo GD, Keegan JB (1980) A technique for revealing the stereom microstructure of fossil crinoids. Palaeontology 23:749–756

    Google Scholar 

  • Thomson W (1872) On the crinoids of the “Porcupine” deep-sea dredging expedition. Proc R Soc Edinburgh 7:764–773

    Google Scholar 

  • Ubaghs G (1967) General characters of Echinodermata. In: Moore RC, Teichert C (eds) Treatise on invertebrate paleontology, Part S, Echinodermata 1, Vol 1. Univ Kansas, Lawrence, Kansas, pp 3–60

    Google Scholar 

  • Ubaghs G (1978) Skeletal morphology of fossil crinoids. In: Moore RC, Teichert C (eds) Treatise on invertebrate paleontology, Part T, Echinodermata 2, Vol 1. Univ Kansas, Lawrence, Kansas, pp 58–216

    Google Scholar 

  • Wilkie IC (1984) Variable tensility in echinoderm collagenous tissues: a review. Mar Behav Physiol 11:1–34

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimmer, J.C., Holland, N.D. & Hayami, I. Fine structure of the stalk of an isocrinid sea lily (Metacrinus rotundus) (Echinodermata, Crinoidea). Zoomorphology 105, 39–50 (1985). https://doi.org/10.1007/BF00312072

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00312072

Keywords

Navigation