Skip to main content
Log in

Identification of the DNA damage-responsive elements of therhp51 + gene, arecA andRAD51 homolog from the fission yeastSchizosaccharomyces pombe

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

TheSchizosaccharomyces pombe rhp51 + gene encodes a recombinational repair protein that shares significant sequence identities with the bacterial RecA and theSaccharomyces cerevisiae RAD51 protein. Levels ofrhp51 + mRNA increase following several types of DNA damage or inhibition of DNA synthesis. Anrhp51::ura4 fusion gene was used to identify the cis-acting promoter elements involved in regulatingrhp51 + expression in response to DNA damage. Two elements, designated DRE1 and DRE2 (fordamage-responsiveelement), match a decamer consensus URS (upstream repressing sequence) found in the promoters of many other DNA repair and metabolism genes fromS. cerevisiae. However, our results show that DRE1 and DRE2 each function as a UAS (upstream activating sequence) rather than a URS and are also required for DNA-damage inducibility of the gene. A 20-bp fragment located downstream of both DRE1 and DRE2 is responsible for URS function. The DRE1 and DRE2 elements cross-competed for binding to two proteins of 45 and 59 kDa. DNase I footprint analysis suggests that DRE1 and DRE2 bind to the same DNA-binding proteins. These results suggest that the DRE-binding proteins may play an important role in the DNA-damage inducibility ofrhp51 + expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aboussekhra A, Chanet R, Adjiri A, Fabre F (1992) Semidominant suppressors of Srs2 helicase mutations ofSaccharomyces cerevisiae map in theRAD51 gene, whose sequence predicts a protein with similarities to prokaryotic RecA proteins. Mol Cell Biol 12:3224–3234

    PubMed  Google Scholar 

  • Alfa C, Fantes P, Hyams J, Mcleod M, Warbrick E (1993) Experiments with fission yeast: a laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Bang DD, Timmermans V, Verhage R, Zeeman AM, Putte P, Brouwer J (1995) Regulation of theSaccharomyces cerevisiae DNA repair geneRAD16. Nucleic Acids Res 23:1679–1685

    PubMed  Google Scholar 

  • Carr AM, Hoekstra MF (1995) The cellular responses to DNA damage. Trends Cell Biol 5:32–40

    PubMed  Google Scholar 

  • Chen J, Samson L (1991) Induction ofS. cerevisiae MAG3-methyl-adenine DNA glycosylase transcript levels in response to DNA damage. Nucleic Acids Res 19:6427–6432

    PubMed  Google Scholar 

  • Cole GM, Mortimer RK (1989) Failure to induce a DNA repair gene,RAD54, inSaccharomyces cerevisiae does not affect DNA repair or recombination pathways. Mol Cell Biol 9:3314–3322

    PubMed  Google Scholar 

  • Elledge SJ, Davis RW (1989a) DNA damage induction of ribonucleotide reductase. Mol Cell Biol 7:4932–4940

    Google Scholar 

  • Elledge SJ, Davis RW (1989b) Identification of the DNA damage-responsive element ofRNR2 and evidence that four distinct cellular factors bind. Mol Cell Biol 9:5373–5386

    PubMed  Google Scholar 

  • Fornace AJ Jr (1992) Mammalian genes induced by radiation: activation of genes associated with growth control. Annu Rev Genet 26:507–526

    PubMed  Google Scholar 

  • Friedberg EC, Walker GC, Siede W (1995) DNA repair and mutagenesis. ASM Press, Herndon, Va.

    Google Scholar 

  • Grimm C, Kohli J, Murray J, Maundrell K (1988) Genetic engineering ofSchizosaccharomyces pombe: a system for gene disruption and replacement using theura4 + gene as a selective marker. Mol Gen Genet 215:81–86

    PubMed  Google Scholar 

  • Gutz H, Heslot H, Leupold U, Loprieno N (1974)Schizosaccharomyces pombe. In: King RC (eds) Handbook of genetics, vol 1. Plenum Press, New York, pp 395–446

    Google Scholar 

  • Herrlich P, Ponta H, Rahmsdorf HJ (1992) DNA damage induced gene expression: signal transduction and relation to growth factor signaling. Rev Physiol Biochem Pharmacol 119:187–223

    PubMed  Google Scholar 

  • Hofmann JFX, Beach D (1994)cdt1 is an essential target of the Cdc10/Sct1 transcription factor: requirement for DNA replication and inhibition of mitosis. EMBO J 13:425–434

    PubMed  Google Scholar 

  • Jang YK, Jin YH, Kim EM, Fabre F, Hong SH, Park SD (1994) Cloning and sequence analysis ofrhp51 +, aSchizosaccharomyces pombe homolog of theSaccharomyces cerevisiae RAD51 gene. Gene 142:207–211

    PubMed  Google Scholar 

  • Jang YK, Jin YH, Kim MJ, Seong RH, Hong SH, Park SD (1995b) A simple and efficient method for the isolation of total RNA from fission yeastSchizosaccharomyces pombe. Biochem Mol Biol Int 37:339–344

    PubMed  Google Scholar 

  • Jang YK, Jin YH, Myung K, Seong RH, Hong SH, Park SD (1996) Differential expression of therhp51 + gene, arecA andRAD51 homolog from the fission yeastSchizosaccharomyces pombe. Gene, 169:125–130

    PubMed  Google Scholar 

  • Jang YK, Jin YH, Shim YS, Kim MJ, Yoo EJ, Seong RH, Hong SH, Park SD (1995a) Evidences for possible involvement of Rhp51 protein in mitotic events including chromosome segregation. Biochem Mol Biol Int 37:329–337

    PubMed  Google Scholar 

  • Lee JK, Park EJ, Chung HK, Hong SH, Joe CO, Park SD (1994) Isolation of UV-inducible transcripts fromSchizosaccharomyces pombe. Biochem Biophys Res Commun 202:1113–1119

    PubMed  Google Scholar 

  • Lee JK, Kim M, Choe J, Seong RH, Hong SH, Park SD (1995) Characterization ofuvi15 +, a stress-inducible gene fromSchizosaccharomyces pombe. Mol Gen Genet 246:663–670

    PubMed  Google Scholar 

  • Lehmann AR, Carr AM, Watts FZ, Murray JM (1991) DNA repair in the fission yeast,Schizosaccharomyces pombe. Mutat Res 250:205–210

    PubMed  Google Scholar 

  • Lowndes NF, McInerny CJ, Johnson AL, Fantes PA, Johnston LH (1992) Control of DNA synthesis genes in fission yeast by the cell-cycle genecdc10 +. Nature 355:449–453

    PubMed  Google Scholar 

  • McClanahan T, McEntee K (1984) Specific transcripts are elevated inSaccharomyces cerevisiae in response to DNA damage. Mol Cell Biol 4:2356–2363

    PubMed  Google Scholar 

  • Moreno S, Klar A, Nurse P (1991) An introduction to molecular genetic analysis of the fission yeastSchizosaccharomyces pombe. Methods enzymol 194:795–823

    PubMed  Google Scholar 

  • Muris DFR, Vreeken K, Carr AM, Broughton BC, Lehmann AR, Lohman PHM, Pastink A (1993) Cloning theRAD51 homologue ofSchizosaccharomyces pombe. Nucleic Acids Res 21:4586–4591

    PubMed  Google Scholar 

  • Radman M (1974) Phenomenology of an inducible mutagenic DNA repair pathway inEscherichia coli: SOS repair hypothesis. In: Prakash L, Sherman F, Miller M, Lawrence C, Tabor HW (eds) Molecular Environmental Aspects of Mutagenesis Thomas CC, Springfield, pp 128–142

    Google Scholar 

  • Rolfe M (1985) UV-inducible transcripts inSaccharomyces cerevi siae. Curr Genet 9:533–538

    PubMed  Google Scholar 

  • Ruby SW, Szostak JW (1985) SpecificSaccharomyces cerevisiae genes are expressed in response to DNA-damaging agents. Mol Cell Biol 5:75–84

    PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis TE (1989) Molecular cloning: a laboratory manual (2nd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sancar GB, Ferris R, Smith FW, Vandeberg B (1995) Promoter elements ofPHR1 gene ofSaccharomyces cerevisiae and their roles in the response to DNA damage. Nucleic Acids Res, 23:4320–4328

    PubMed  Google Scholar 

  • Schultz MC, Choe SY, Reeder RH (1991) Specific initiation by RNA polymerase I in a whole cell extract from yeast. Proc Natl Acad Sci USA 88:1004–1008

    PubMed  Google Scholar 

  • Sebastian J, Sancar GB (1991) A damage-responsive DNA binding protein regulates transcription of the yeast DNA repair genePHR1. Proc Natl Acad Sci USA 88:11251–11255

    PubMed  Google Scholar 

  • Sebastian J, Kraus B, Sancar GB (1990) Expression of the yeastPHR1 gene is induced by DNA-damaging agents. Mol Cell Biol 10:4630–4637

    PubMed  Google Scholar 

  • Shinohara A, Ogawa H, Matsuda Y, Ushio N, Ikeo K, Ogawa T (1993) Cloning of human, mouse and fission yeast recombination genes homologous toRAD51 andrecA. Nature Genet 4:239–243

    PubMed  Google Scholar 

  • Siede W, Friedberg EC (1992) Regulation of the yeastRAD2 gene: DNA damage-dependent induction correlates with protein binding to regulatory sequences and their deletion influences survival. Mol Gen Genet 232:247–256

    PubMed  Google Scholar 

  • Siede W, Robinson GW, Kalainov D, Malley T, Friedberg EC (1989) Regulation of theRAD2 gene ofSaccharomyces cerevisiae. Mol Microbiol 3:1697–1707

    PubMed  Google Scholar 

  • Silva CM, Tully DB, Petch LA, Jewell CM, Cidlowski JA (1987) Application of a protein-blotting procedure to the study of human glucocorticoid receptor interactions with DNA. Proc Natl Acad Sci USA 84:1744–1788

    PubMed  Google Scholar 

  • Singh KK, Samson L (1995) Replication protein A binds to regulatory elements in yeast DNA repair and DNA metabolism genes. Proc Natl Acad Sci USA 92:4907–4911

    PubMed  Google Scholar 

  • Staudt LM, Singh H, Sen R, Wirth T, Sharp PA, Baltimore D (1986) A lymphoid-specific protein binding to the octamer motif of immunoglobulin genes. Nature 323:640–643

    PubMed  Google Scholar 

  • Walker AI, Hunt T, Jackson RJ, Anderson CW (1985) Double-stranded DNA induces the phosphorylation of several proteins including the 90 000 mol wt heat-shock protein in animal cell extracts. EMBO J 4:139–145

    PubMed  Google Scholar 

  • Weilguny D, Pratorius N, Carr AM, Egel R, Nielsen O (1991) New vectors in fission yeast: application for a cloning thehis2 gene. Gene 99:47–54

    PubMed  Google Scholar 

  • Xiao W, Singh KK, Chen B, Samson L (1993) A common element involved in transcriptional regulation of two DNA alkylation repair genes (MAG andMGT1) ofSaccharomyces cerevisiae. Mol Cell Biol 13:7213–7221

    PubMed  Google Scholar 

  • Zhou Z, Elledge SJ (1992) Isolation ofcrt mutants constitutive for transcription of the DNA damage-inducibleRNR3 inSaccharo myces cerevisiae. Genetics 131:851–866

    PubMed  Google Scholar 

  • Zhou Z, Elledge SJ (1993)DUN1 encodes a protein kinase that controls the DNA damage response in yeast. Cell 75:1119–1127

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. P. Hollenberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, Y.K., Jin, Y.H., Shim, Y.S. et al. Identification of the DNA damage-responsive elements of therhp51 + gene, arecA andRAD51 homolog from the fission yeastSchizosaccharomyces pombe . Molec. Gen. Genet. 251, 167–175 (1996). https://doi.org/10.1007/BF02172915

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02172915

Key words

Navigation