Skip to main content
Log in

The contractile ring

I. Fine structure of dividing mammalian (HeLa) cells and the effects of cytochalasin B

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

Techniques of individual cell selection and precise ultramicrotomy have been employed to demonstrate that the contractile ring of cleaving HeLa cells is a transitory cytoplasmic organelle of distinctive fine structure and location. The contractile ring is an uninterrupted annulus encircling the equator of dividing cells exactly where the cleavage furrow forms. It is about 10 microns wide, up to 0.2 microns in thickness, and is composed exclusively of circumferentially aligned thin filaments 40–70 Å in diameter. Contractile ring filaments appear to be associated with the overlying plasma membrane.

Controlled experiments with a mold metabolite (cytochalasin B) reveals that within a few minutes the drug abolishes the ability of HeLa cells to undergo cytokinesis. Cytochalasin B seems to decompose the contractile ring. It has no other clearly identifiable effects on other cell structures, notably the mitotic apparatus. Cytochalasin B is the only drug known which selectively inhibits cytokinesis in animal cells.

In conclusion, the contractile ring is the most likely organelle responsible for cytokinesis in HeLa cells. Similar organelles probably occur in all cleaving animal cells. Successful cleavage depends upon the structural and functional integrity of the contractile ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldridge, D. C., Armstong, J. J., Speake, R. N., Turner, W. B.: The structure of cytochalasins A and B. Chem. Comm. 1, 26–27 (1967).

    Google Scholar 

  • Allenspach, A. L., Roth, L. E.: Fine structure of mitosis in the chick embryo. Structural variations during mitotis in the chick embryo. J. Cell Biol. 33, 179–196 (1967).

    Google Scholar 

  • Arnold, J. M.: Cleavage furrow formation in a telolecithal egg (Loligo paellii). I. Filaments in early furrow formation. J. Cell Biol. 41, 894–904 (1969).

    Google Scholar 

  • Baker, P. C., Schroeder, T. E.: Cytoplasmic filaments and morphogenetic movement in the amphibian neural tube. Develop. Biol. 15, 432–450 (1967).

    Google Scholar 

  • Buck, R. C., Krishan, A.: Site of membrane growth during cleavage of amphibian epithelial cells. Exp. Cell Res. 38, 426–428 (1965).

    Google Scholar 

  • —, Tisdale, J. M.: The fine structure of the midbody of the rat erythroblast. J. Cell Biol. 13, 109–115 (1962a).

    Google Scholar 

  • Buck, R. C., Krishan, A.: An electron microscope study of the development of the cleavage furrow in mammalian cells. J. Cell Biol. 13, 117–125 (1962b).

    Google Scholar 

  • Byers, B., Abramson, D. H.: Cytokinesis in HeLa: post-telophase delay and microtubule-associated motility. Protoplasma 66, 413–435 (1968).

    Google Scholar 

  • Carter, S. B.: Effects of cytochalasin B on mammalian cells. Nature (Lond.) 213, 261–264 (1967).

    Google Scholar 

  • Chambers, R.: Structural and kinetic aspects of cell division. J. cell. comp. Physiol. 12, 148–165 (1938).

    Google Scholar 

  • Cloney, R. A.: Cytoplasmic filaments and cell movements: epidermal cells during ascidian metamorphosis. J. Ultrastruct. Res. 14, 300–328 (1966).

    Google Scholar 

  • —: Cytoplasmic filaments and morphogenesis: the role of the notochord in ascidian metamorphosis. Z. Zellforsch. 100, 31–53 (1969).

    Google Scholar 

  • DeSanto, R. S., Dudley, P. L.: Ultramicroscopic filaments in the ascidian Botryllus schlosseri (Pallas) and their possible role in ampullar contraction J. Ultrastruct. Res. 28, 259–274 (1969).

    Google Scholar 

  • Dougherty, W. J., Lee, M. McN.: Light and electron microscope studies of smooth endoplasmic reticulum in dividing rat hepatic cells. J. Ultrastruct. Res. 19, 200–220 (1967).

    Google Scholar 

  • Franzini-Armstrong, C., Porter, K. R.: Sarcolemmal invaginations constituting the T system in fish muscle fibers. J. Cell Biol. 22, 675–696 (1964).

    Google Scholar 

  • George, P., Journey, L. J., Goldstein, M. H.: Effect of vincristine on the fine structure of HeLa cells during mitosis. J. nat. Cancer Inst. 35, 355–375 (1965).

    Google Scholar 

  • Goodenough, D. A., Ito, S., Revel, J. P.: Electron microscopy of early cleavage stages in Arbacia punctulata. Biol. Bull. 135, 421 (1968).

    Google Scholar 

  • Hepler, P. K., Jackson, W. T.: Microtubules and early stages of cell-plate formation in the endosperm of Haemanthus katherinae Baker. J. Cell Biol. 38, 437–446 (1968).

    Google Scholar 

  • Humphreys, W. J.: Electron microscope studies of the fertilized egg and the two cell stage of Mytilus edulis. J. Ultrastruct. Res. 10, 244–262 (1964).

    Google Scholar 

  • Kelly, R. E., Rice, R. V.: Localization of myosin filaments in smooth muscle. J. Cell Biol. 37, 105–116 (1968).

    Google Scholar 

  • Kinoshita, S.: Relative deficiency of intracellular relaxing system observed in presumptive furrow region in induced cleavage in the centrifuged sea urchin egg. Exp. Cell Res. 51, 395–405 (1968).

    Google Scholar 

  • Krishan, A., Buck, R. C.: Structure of the mitotic spindle in L strain fibroblasts. J. Cell Biol. 24, 433–444 (1965).

    Google Scholar 

  • —, Ray-Chaudhuri, R.: Asychrony of nuclear development in cytochalasin B-induced multinucleate cells. J. Cell Biol. 43, 618–621 (1969).

    Google Scholar 

  • Lewis, W. H.: On the role of a superficial plasmagel layer in division locomotion and changes in form of cells. Arch. exp. Zellforsch. 22, 270 (1938).

    Google Scholar 

  • Marsland, D., Landau, J.: The mechanisms of cytokinesis: temperature-pressure studies on the cortical gel system in various marine eggs. J. exp. Zool. 125, 507–539 (1954).

    Google Scholar 

  • McIntosh, J. R., Hepler, P. K., Wie, D. G. van: Model for mitosis. Nature (Lond.) 224, 659–663 (1969).

    Google Scholar 

  • Mercer, E. H., Wolpert, L.: Electron microscopy of dividing sea urchin eggs. Exp. Cell Res. 14, 629–632 (1958).

    Google Scholar 

  • Mota, M.: Karyokinesis without cytokinesis in the grasshopper. Exp. Cell Res. 17, 76–83 (1959).

    Google Scholar 

  • Murray, R. G., Murray, A. S., Pizzo, A.: The fine structure of mitosis in rat thymic lymphocytes. J. Cell Biol. 26, 601–619 (1965).

    Google Scholar 

  • Nonomura, Y.: Myofilaments in smooth muscle of guinea pig taenia coli. J. Cell Biol. 39, 741–745 (1968).

    Google Scholar 

  • Odor, D. L., Renninger, D. F.: Polar body formation in the rat oocyte as observed with the electron microscope. Anat. Rec. 137, 13–23 (1960).

    Google Scholar 

  • Panner, B. J., Honig, C. R.: Locus and state of aggregation of myosin in tissue sections of vertebrate smooth muscle. J. Cell Biol. 44, 52–61 (1970).

    Google Scholar 

  • Paweletz, N.: Zur Funktion des „Flemmings-Körpers“ bei der Teilung tierischer Zellen. Naturwissenschaften 54, 533–535 (1967).

    Google Scholar 

  • Phillips, D. M.: Observations of spermiogenesis in the fungus gnat Sciara coprophila. J. Cell Biol. 30, 477–497 (1966).

    Google Scholar 

  • Pucci-Minarfa, L., Minarfa, S., Collier, J. M.: Distribution of ribosomes in the egg of Ilyanassa obsoleta. Exp. Cell Res. 57, 167–178 (1969).

    Google Scholar 

  • Rappaport, R.: Geometrical relations of the cleavage stimulus in invertebrate eggs. J. theor. Biol. 9, 51–66 (1965).

    Google Scholar 

  • —: Cell division: direct measurement of maximum tension exerted by furrow in echinoderm eggs. Science 156, 1241–1243 (1967).

    Google Scholar 

  • —: Reversal of chemical cleavage inhibition in echinoderm eggs. J. Cell Biol. 43, 111A (1969).

    Google Scholar 

  • Ridler, M. A. C., Smith, G. F.: The response of human culture lymphocytes to cytochalasin B. J. Cell Sci. 3, 595–602 (1968).

    Google Scholar 

  • Robbins, E., Gonatas, N. K.: The ultrastructure of a mammalian cell during the mitotic cycle. J. Cell Biol. 21, 429–463 (1964a).

    Google Scholar 

  • —: Histochemical and ultrastructural studies on HeLa cells exposed to spindle inhibitors with special reference to the interphase cell. J. Histochem. Cytochem. 12, 704–711 (1964b).

    Google Scholar 

  • Roth, L. E., Wilson, H. J., Chakraborty, J.: Anaphase structure in mitotic cells typified by spindle elongation. J. Ultrastruct. Res. 14, 460–483 (1966).

    Google Scholar 

  • Rothweiler, W., Tamm, C.: Isolation and structure of Phomin. Experientia (Basel) 22, 750–752 (1966).

    Google Scholar 

  • Sakai, H.: A ribonucleoprotein which catalyses thiol-disulfide exchanges in the sea urchin egg. J. biol. Chem. 242, 1458–1461 (1967).

    Google Scholar 

  • Schroeder, T. E.: Cytoplasmic filaments in the cleavage furrow. Exp. Cell Res. 53, 272–276 (1968).

    Google Scholar 

  • —: The role of “contractile ring” filaments in dividing Arbacia eggs. Biol. Bull. 137, 413–414 (1969).

    Google Scholar 

  • —: Neurulation in Xenopus laevis. An analysis and model based upon light and electron microscopy. J. Embryol. exp. Morph. 23, 427–462 (1970).

    Google Scholar 

  • Selman, G. G., Perry, M. M.: Ultrastructural changes in the surface layers of the newt's egg in relation to the mechanism of its cleavage. J. Cell Sci. 6, 207–228 (1970).

    Google Scholar 

  • Szollosi, D.: Cortical cytoplasmic filaments of cleaving eggs: a structural element corresponding to the contractile ring. J. Cell Biol. 44, 192–209 (1970).

    Google Scholar 

  • Tahmisian, T. N., Devine, R. L., Wright, B. J.: The ultrastructure of the plasma membranes at the division furrow of grasshopper germ cells. Z. Zellforsch. 77, 316–324 (1967).

    Google Scholar 

  • Thomas, R. J.: Cytokinesis during early development of a teleost embryo: Brachydanio rerio. J. Ultrastruct. Res. 24, 232–238 (1968).

    Google Scholar 

  • Tilney, L. G., Marsland, D.: A fine structural analysis of cleavage induction and furrowing in the eggs of Arbacia punctulata. J. Cell Biol. 42, 107–184 (1969).

    Google Scholar 

  • Wessells, N. K., Evans, J.: Ultrastructural studies of early morphogenesis and cytodifferentiation in the embryonic mammalian pancreas. Develop. Biol. 17, 413–446 (1968).

    Google Scholar 

  • Wrenn, J., Wessells, N. K.: An ultrastructural study of lens invagination in the mouse. J. exp. Zool. 171, 359–367 (1969).

    Google Scholar 

  • Yanders, A. F., Brewen, J. G., Peacock, W. J., Goodchild, D. J.: Meiotic drive and visible polarity in Drosophila spermatocytes. Genetics 59, 245–253 (1968).

    Google Scholar 

  • Zotin, A. I.: The mechanism of cleavage in amphibian and sturgeon eggs. J. Embryol. exp. Morph. 12, 247–262 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schroeder, T.E. The contractile ring. Z. Zellforsch. 109, 431–449 (1970). https://doi.org/10.1007/BF00343960

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00343960

Key-Words

Navigation