Skip to main content
Log in

Evaluation of the anisotropic Green's function in three dimensional elasticity

  • Original
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A perturbation expansion technique for approximating the three dimensional anisotropic elastic Green's function is presented. The method employs the usual series for the matrix (I−A)-1 to obtain an expansion in which the zeroth order term is an isotropic fundamental solution. The higher order contributions are expressed as contour integrals of matrix products, and can be directly evaluated with a symbolic manipulation program. A convergence condition is established for cubic crystals, and it is shown that convergence is enhanced by employing Voigt averaged isotropic constants to define the expansion point. Example calculations demonstrate that, for moderately anisotropic materials, employing the first few terms in the series provides an accurate solution and a fast computational algorithm. However, for strongly anisotropic solids, this approach will most likely not be competitive with the Wilson-Cruse interpolation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnett D. M. 1972: The precise evaluation of derivatives of the anisotropic elastic Green's functions, Phys. Stat. Sol. (b), 49: 741–748

    Google Scholar 

  • Bross V. H. 1968: ZAMP 19: 434

    Google Scholar 

  • Burgers J. M. 1939: Proc. Kon. Nederl. Akad. Wetensh. 42: 378

    Google Scholar 

  • Cruse T. A. 1969: Numerical solutions in three-dimensional elastostatics. Int. J. Solids Struct. 5: 1259–1274

    Google Scholar 

  • Cruse T. A. 1988: Boundary Element Analysis in Computational Fracture Mechanics. Kluwer Academic Publishers, Boston

    Google Scholar 

  • Dederichs P. H.; Liebfried G. 1969: Elastic Green's function for anisotropic cubic crystals, Phys. Rev. 188: 1175–1183

    Google Scholar 

  • Fredholm, I. 1900: Acta Math. (Stockhlom) 23: p1

  • Gray L. J.; Chisholm M. F.; Kaplan T. 1995: Surface strains in epitaxial systems, Appl. Phys. Lett. 66: 1924–1926

    Google Scholar 

  • Gray L. J.; Martha L. F.; Ingraffea A. R. 1990: Hypersingular integrals in boundary element fracture analysis, Int. J. Numer. Meth. Engrg. 29: 1135–1158

    Google Scholar 

  • Hill R. 1952: Proc. Phys. Soc. (London), A65: 349

    Google Scholar 

  • Huntington, H. B. 1958: The elastic constants of crystals, in Solid State Physics, Advances in Research and Applications, Vol. 7, In: F. Seitz; D. Turnbull (eds.), Academic Press, pp. 213–351

  • Kinoshita, N.; Mura, Y.: Green's functions for anisortropic elasticity. AEC Contract Report, C00-2034-5. Northwestern University

  • Kittel C. 1967: Introduction to Solid State Physics, John Wiley and Sons. New York, third ed.

    Google Scholar 

  • Kröner K. 1953: Z. Physik 136: 402

    Google Scholar 

  • Lie K. C.; Koehler J. S. 1968: The elastic stress field proceduced by a point force in a cubic crystal, Adv. Phys. 17: 421–478

    Google Scholar 

  • Lifschitz I. M.; Rozentsweig L. N. 1947: Zh. Eksperim. Theor. Fiz., 17: 783

    Google Scholar 

  • Mann E.; Jan R. V.; Seeger A. 1961: Phys. Status Solidi, 1: 17

    Google Scholar 

  • Mukherjee S. 1982: Boundary Element Methods in Creep and Fracture, Elsevier Applied Science Publishers, England

    Google Scholar 

  • Pan Y. C.; Chou T. W. 1976: Point force solutions for an infinite transversely isotropic solid, Trans. ASME J. Appl. Mech. 43: 608–612

    Google Scholar 

  • Partridge P. W.; Brebbia C. A.; WrobelL. C. 1992: The Dual Reciprocity Boundary Element Method, Computational Mechanics Publications, Southampton and Boston

    Google Scholar 

  • Rizzo F. J. 1967: An integral equation approach to boundary value problems of classical elastostatics, Quart. Appl. Math. 25: 83–95

    Google Scholar 

  • Schclar N. A. 1994: Anisotropic Analysis using Boundary Elements, Computational Mechanics Publications, Southampton and Boston

    Google Scholar 

  • Vogel S. M.; Rizzo F. J. 1973: An integral equation formulation of three-dimensional anisotropic elastostatic boundary value problems, J. Elast. 3: 203–216

    Google Scholar 

  • Wilson R. B.; Cruse T. A. 1978: Efficient implementation of anisotropic three dimensional boundary-integral equation stress analysis. Int. J. Numer. Meth. Engrg. 12: 1383–1397

    Google Scholar 

  • Yang W. H.; Srolovitz D. J. 1993: Crack-like surface instabilities in stressed solids, Phys. Rev. Lett. 71: 1593–1596

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by T. Cruse, 21 August 1995

This research was sponsored by the Exploratory Studies Program of Oak Ridge National Laboratory and the Division of Materials Science, U. S. Department of Energy, under contract DE-AC05-84OR21400 with Lockheed Martin Energy Systems, Inc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gray, L.J., Ghosh, D. & Kaplan, T. Evaluation of the anisotropic Green's function in three dimensional elasticity. Computational Mechanics 17, 255–261 (1996). https://doi.org/10.1007/BF00364828

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00364828

Keywords

Navigation