Skip to main content
Log in

On continuum damage-elastoplasticity at finite strains

A computational framework

  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A strain-based continuum damage-elastoplasticity formulation at finite strains is proposed based on an additive split of thestress tensor. Within the proposed framework, a hyperelastic extension of the classicalJ 2-flow theory is developed as a model problem, with a rate-free formulation of the (linear) kinematic hardening law that is free from spurious stress oscillation in the simple shear test. The algorithmic implementation of the coupled damage-elastoplasticity model is shown to reduce to a trivial modification of the classical radial return which is amenable toexact linearization. This results in a closed form expression for theconsistent elastoplastic-damage modulus. The algorithmic treatment of the damage model with no restrictions on the functional forms governing the plastic response is considered subsequently. It is emphasized that objective rates and incrementally objective algorithms play no role in the present approach. A number of numerical experiments are presented that illustrate the performance of the proposed formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atluri, S. N.; Nishioka, T. (1985): Numerical studies in dynamic fracture mechanics. Int. Fract. 27, 245–261

    Google Scholar 

  • Atluri, S. N.; Nishioka, T.; Nakagaki, M. (1985): Incremental path-independent integrals in inelastic and dynamic fracture mechanics. Eng. Fract. Mech. 20, 193–208

    Google Scholar 

  • Bathe, K. J.; Cimento, A. P. (1980): Some practical procedures for the solution of nonlinear finite element equations. Comput. Methods Appl. Mech. Eng. 22, 59–85

    Google Scholar 

  • Bathe, K. J.; Sonnad, V. (1980): On effective implicit time integration in analysis of fluid-structure problems. Int. J. Numer. Meth. Eng. 15, 943–948

    Google Scholar 

  • Bazant, Z. P.; Belytschko, T. (1987): Strain softening continuum damage: localization and size effect. Proc. 2nd international conference on constitutive laws, University of Arizona, Tucson

    Google Scholar 

  • Coleman, B. D.; Gurtin, M. (1967): Thermodynamics with internal variables. J. Chem. Phys. 47, 597–613

    Google Scholar 

  • Flory, R.J. (1961): Thermodynamic relations for high elastic material. Trans. Faraday Soc. 57, 829–838

    Google Scholar 

  • Giroux, E. D. (1973): HEMP user's manual. Lawrence Livermore Lab. Rep. UCRL-51079

  • Hallquist, J. O. (1983): NIKE2D - A vectorized, implicit, finite deformation, finite element code for analyzing the static and dynamic response of 2-D solids. Lawrence Livermore National Lab. rep. UCID-19677

  • Hughes, T. J. R. (1987): A course in linear finite elements. New York: Prentice-Hall

    Google Scholar 

  • Kachanov, L. M. (1958): Time of the rupture process under creep conditions. Izv. Akad. Nauk, SSSR Otd. Tekh. Nauk 8, 26–31

    Google Scholar 

  • Key, S. W. (1984): On an implementation of finite strain plasticity in transient dynamic large-deformation calculations. In Nemat-Nasser, S. (ed.), Theoretical foundation for large-scale computations for nonlinear material behavior Amsterdam: Nijhoff

    Google Scholar 

  • Knott, J. F. (1973): Fundamentals of fracture mechanics. London: Butterworth

    Google Scholar 

  • Krieg, R. D.; Krieg, D. B. (1977): Accuracies of numerical solution methods for the elastic-perfectly plastic model. J. Press. Vessel Tech. 99, 510–515

    Google Scholar 

  • Lemaitre, J. (1984): How to use damage mechanics. Nucl. Eng. Des. 80, 233–245

    Google Scholar 

  • Levenberg, K. (1944): A method for the solution of certain non-linear problems in least squares. Quart. Appl. Math. 2, 164–168

    Google Scholar 

  • Luenberger, D. G. (1984): Introduction to linear and nonlinear programming, 2nd edn. New York: Addison-Wesley

    Google Scholar 

  • Marquardt, D. W. (1983): An algorithm for the least-square estimation of nonlinear parameters. J. SIAM 11, 431–441

    Google Scholar 

  • Marsden, J. E.; Hughes, T. J. R. (1983): Mathematical foundations of elasticity. Englewoord Cliffs/Prentice-Hall

    Google Scholar 

  • Matthies, H.; Strang, G. (1979): The solution of nonlinear finite element equations. Int. J. Numer. Math. Eng. 14, 1613–1626

    Google Scholar 

  • Mazars, J. (1982): Mechanical damage and fracture of conrete structures. Adv. Frac. Res. 4, 1499–1506

    Google Scholar 

  • Pietruszczak, S.; Mroz, Z. (1981): Finite element analysis of deformation of strain-softening materials. Int. J. Numer. Meth. Eng. 17, 327–334

    Google Scholar 

  • Nagtegaal, J. C.; de Jong, J. E. (1981 a): Some computational aspects of elastic-plastic large strain analysis. Int. Numer. Meth. Eng. 17, 15–41

    Google Scholar 

  • Nagtegaal, J. C.; de Jong, J. E. (1981 b): Some aspects of non-isotropic work-hardening in finite strain plasticity. In: Lee, E. H.; Mallett, R. L. (eds.) Plasticity of metals at finite strain, pp. 65-102. Proc. research workshop, Stanford University

  • Norris, D. M. Jr (1976): Private communication. Lawrence Livermore Lab.

  • Norris, D. M. Jr.; Moran, B.; Scudder, J. K.; Quinones, D. F. (1978): A computer simulation of the tension test. J. Mech. Phys. Solids 26, 1–19

    Google Scholar 

  • Ortiz, M. (1985): A constitutive theory for the inelastic behavior of concrete. Mech. Mater. 4, 67–93

    Google Scholar 

  • Ortiz, M.; Simo, J. C. (1986): An analysis of a new class of integration algorithms for elastoplastic constitutive relations. Int. J. Numer. Meth. Eng. 23, 353–366

    Google Scholar 

  • Pazy, (1983): Semigroups of linear operators and applications to partial differential equations. Berlin, Heidelberg, New York: Springer (Applied Mathematical Sciences, vol. 44)

    Google Scholar 

  • Prager, W.; Hodge, P. G. (1951): Theory of perfectly plastic solids. New York: Wiley

    Google Scholar 

  • Sandler, I.; Wright, J. (1984): Summary of strain-softening. In. Nemat-Nasser, S. (ed.) Theoretical foundation for large scale computations of nonlinear material behavior. DARPA-NSF Workshop, Northwestern University

  • Simo, J. C. (1987 a): On a fully three-dimensional visco-elasticity damage model: formulation and computational aspects. Comput. Methods Appl. Mech. Eng. 60, 153–173

    Google Scholar 

  • Simo, J. C. (1988b, c): A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: computational aspects. Part II. Comput. Methods Appl. Mech. Eng. 68, 1–31

    Google Scholar 

  • Simo, J. C.; Ju J. W. (1987 a): Strain and stress based contunuum damage models. I: Formulation. Int. J. Solids Structures 23, No. 7, 821–840

    Google Scholar 

  • Simo, J. C.; Ju, J. W. (1987 b): Strain and stress based continuum damage models. II: Comptational aspects. Int. J. Solids Structures, 23, 7, 841–869

    Google Scholar 

  • Simo, J. C.; Marsden, J. E. (1984): On the rotated stress tensor and the material version of the Doyle-Erickson formula. Arch. Rat. Mech. Anal. 86, 213–231

    Google Scholar 

  • Simo, J. C.; Ortiz, M. (1985): A unified approach to finite deformation elastoplasticity based on the use of hyperelasic relations. Comput. Methods Appl. Mech. Eng. 49, 221–245

    Google Scholar 

  • Simo, J. C.; Taylor, R. L. (1985): Consistent tangent operators for rate independent elasto-plasticity. Comput. Methods Appl. Mech. Eng. 48, 101–118

    Google Scholar 

  • Simo, J. C.; Taylor, R. L.; Pister, K. S. (1985): Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput. Methods Appl. Mech. Eng. 51, 177–208

    Google Scholar 

  • Taylor, L. M.; Becker, E. B. (1983): Some computational aspects of large deformation, rate-dependent plasticity problems. Comput. Methods Appl. Mech. Eng. 41, 251–277

    Google Scholar 

  • Wilkins, M. L. (1964): Calculation of elastic-plastic flow. Methods Comput. Phys. 3

  • Willam, K.; Prameno, E.; Sture, S. (1987): Uniqueness and stability issues of strain softening computations. Proc. 2nd international conference on constitutive laws. University of Arizona, Tucson

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simo, J.C., Ju, J.W. On continuum damage-elastoplasticity at finite strains. Computational Mechanics 5, 375–400 (1989). https://doi.org/10.1007/BF01047053

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01047053

Keywords

Navigation