Skip to main content
Log in

The syndrome of hypertension and hyperkalaemia with normal glomerular function (Gordon's syndrome)

A pathophysiological study

  • International Symposium on Hereditary Nephropathies Heidelberg, 6–8 October, 1986
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

A 14-year-old boy with the syndrome of hypertension and hyperkalaemia with normal glomerular filtration rate (Gordon's syndrome) is described. The patient's clinical symptoms consisted of periodic paralysis, slight metabolic acidosis of the proximal type and hypercalciuria. Prostaglandin excretion was normal. Infusion of atrial natriuretic peptide had no effect on electrolyte excretion or glomerular function although a normal increase in cyclic guanosine monophosphate was demonstrated in plasma and urine. This lack of sensitivity to atrial natriuretic peptide offers a new pathophysiological concept in this syndrome. Treatment with hydrochlorothiazide was successful in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gordon RD, Geddes RA, Dawsey CGK, O'Halloran MW (1970) Hypertension and severe hyperkalaemia associated with suppression renin and aldosterone and completely reversed by dietary sodium restriction. Australas Ann Med 4:287–294

    Google Scholar 

  2. Gordon RD (1986) Syndrome of hypertension and hyperkalaemia with normal glomerular filtration rate. Hypertension 8:93–102

    PubMed  Google Scholar 

  3. Van Oort A, Monnens L, Van Munster P (1980) Beta-2-microglobulin clearance, an indicator of renal tubular maturation. Int J Pediatr Nephrol 1:80–84

    Google Scholar 

  4. Monnens L, Smulders Y, Van Lier H, De Boo T (1981) DDAVP test for assessment of renal concentrating capacity in infants and children. Nephron 29:151–154

    PubMed  Google Scholar 

  5. Kruse K, Kracht U, Göpfert G (1982) Renal threshold phosphate concentration (TmP04/GFR). Arch Dis Child 57:217–223

    PubMed  Google Scholar 

  6. Berg U, Aperia A, Broberger O (1971) Subclinical defects in renal regulation of acid base balance in children with recurrent urinary tract infections. Acta Paediatr Scand 60: 521–527

    PubMed  Google Scholar 

  7. Rodriguez-Soriano J, Vallo A, Castillo G, Oliveros R (1981) Renal handling of water and sodium in infancy and childhood: a study using clearance methods during hypotonic saline diuresis. Kidney Int 20:700–704

    PubMed  Google Scholar 

  8. Fiselier T, Monnens L, Van Munster P, Jansen M, Peer P, Lijnen P (1984) The renin-angiotensin-aldosterone system in infancy and childhood in basal conditions and after stimulation. Eur J Pediatr 143:18–24

    PubMed  Google Scholar 

  9. Monnens L, Jonkman A, Thomas C (1984) Responses to indomethacin and hydrochlorothiazide in nephrogenic diabetes insipidus. Clin Sci 66:709–715

    PubMed  Google Scholar 

  10. Russell S (1949) Blood volume studies in healthy children Arch Dis Child 24:88–98

    Google Scholar 

  11. Rascher W, Tulassay T, Lang RE (1985) Atrial natriuretic peptide in plasma of volume overloaded children with chronic renal failure. Lancet II:303–305

    Google Scholar 

  12. Fyhrquist F, Tötterman K, Tikkanen I (1985) Infusion of atrial natriuretic peptide in liver cirrhosis with ascites. Lancet II:1439

    Google Scholar 

  13. Weinstein S, Allan D, Mendoza S (1974) Hyperkalaemia, acidosis, and short stature associated with a defect in renal potassium excretion. J Pediatr 85:355–358

    PubMed  Google Scholar 

  14. Sanjad S, Keenan B, Hill L (1983) Renal hypoprostaglandism, hypertension and type IV renal tubular acidosis reversed by furosemide. Ann Intern Med 99:624–627

    PubMed  Google Scholar 

  15. Weidmann P, Hasler L, Gnädinger M, Lang R, Uehlinger D, Shaw S, Rascher W, Reubi F (1986) Blood levels and renal effects of atrial natriuretic peptide in normal men. J Clin Invest 77:734–742

    PubMed  Google Scholar 

  16. Burnett J, Opgenorth T, Granger J (1986) The renal action of atrial natriuretic peptide during control of glomerular filtration. Kidney Int 30:16–19

    PubMed  Google Scholar 

  17. Salazar F, Fiksen-Olsen M, Opgenorth T, Granger J, Burnett J, Romero J (1986) Renal effects of ANP without changes in glomerular filtration rate and blood pressure. Am J Physiol 251:F532-F536

    PubMed  Google Scholar 

  18. Sosa R, Volpe M, Marion D, Atlas S, Laragh J, Vaughan E, Maack T (1986) Relationship between renal hemodynamic and natriuretic effects of atrial natriuretic factor. Am J Physiol 250:F520-F524

    PubMed  Google Scholar 

  19. Hamlyn J, Blaustein M (1986) Sodium chloride, extracellular fluid volume, and blood pressure regulation. Am J Physiol 251:F563-F575

    PubMed  Google Scholar 

  20. Field M, Giebisch G (1985) Hormonal control of renal potassium excretion. Kidney Int 27:379–387

    PubMed  Google Scholar 

  21. Tunny T, Higgins B, Gordon R (1986) Plasma levels of atrial natriuretic peptide in man in primary aldosteronism, in Gordon's syndrome and in Bartter's syndrome. Clin Exp Pharmacol Physiol 13:341–345

    PubMed  Google Scholar 

  22. Gerzer R, Witzgall H, Tremblay J, Gutkowska J, Hamet P (1985) Rapid increase in plasma and urinary cyclic GMP after bolus injection of atrial natriuretic factor in man. J Clin Endocrinol Metab 61:1217–1219

    PubMed  Google Scholar 

  23. Ohashi M, Fujio N, Nawata H, Kato K, Ibayashi H (1986) α-human atrial natriuretic polypeptide-induced rise of plasma and urinary cyclic GMP concentration in human subjects. Clin Exp Theory Practice A8:67–73

    Google Scholar 

  24. Leitman D, Andresen J, Kuno T, Kamisaki Y, Chang J, Murad F (1986) Identification of multiple binding sites for atrial natriuretic factor by affinity cross-linking in cultured endothelial cells. J Biol Chem 261:11650–11655

    PubMed  Google Scholar 

  25. Blaine E, Seymour A, Marsh E, Napier M (1986) Effect of atrial natriuretic factor on renal function and cyclic GMP production. Fed Proc 45:2122–2127

    PubMed  Google Scholar 

  26. Hirth C, Stasch J, John A, Kazda S, Morich F, Neuser D, Wohlfeil S (1986) The renal response to acute hypervolemia is caused by atrial natriuretic peptides. J Cardiovasc Pharmacol 9:268–275

    Google Scholar 

  27. Farfel Z, Iaina A, Levi J, Gafni J (1978) Proximal renal tubular acidosis. Association with familial normaldosteronemic hyperpotassemia and hypertension. Arch Intern Med 138:1837–1840

    PubMed  Google Scholar 

  28. Spitzer A, Edelmann C Jr, Goldberg L, Henneman R (1973) Short stature, hyperkalaemia and acidosis: a defect in renal transport of potassium. Kidney Int 3:251–257

    PubMed  Google Scholar 

  29. Litaka K, Watanabe N, Asakura A, Kasai N, Sakai T (1980) Familial hyperkalaemia, metabolic acidosis and short stature with normal renin and aldosterone levels. Int J Pediatr Nephrol 1:242–245

    Google Scholar 

  30. Margolis B, Lifschitz M (1986) The Spitzer-Weinstein Syndrome: one form of type IV renal tubular acidosis and its response to hydrochlorothiazide. Am J Kidney Dis 7: 241–244

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semmekrot, B., Monnens, L., Theelen, B.G.A. et al. The syndrome of hypertension and hyperkalaemia with normal glomerular function (Gordon's syndrome). Pediatr Nephrol 1, 473–478 (1987). https://doi.org/10.1007/BF00849256

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00849256

Key words

Navigation