Skip to main content
Log in

Sodium ion distribution in the vitreous body

  • Papers
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

We have studied the nuclear magnetic resonance (NMR) relaxation behavior, and thus the dynamic properties, of the sodium ion in the vitreous body at different temperatures. The23Na NMR spectrum exhibits a resonance, the intensity of which accounts for an ion visibility of 100%. The23Na longitudinal and transverse relaxation times, at all temperatures but the highest, present two components, suggesting that the sodium ions are present in two states of different mobility, whose populations are in slow exchange on the NMR time scale. The correlation times and quadrupole coupling constants for the two sodium pools have been derived. The faster relaxation of a fraction of the vitreal sodium has tentatively been ascribed to the influence of the macromolecular framework of the vitreous body. The reported information may be of use for the understanding of the diagnostic applications of23Na magnetic resonance imaging of the ocular structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buist RJ, Deslauriers R, Saunders JK, Main wood GW (1991)23Na and flame photometric studies of the NMR visibility of sodium in rat muscle. Can J Physiol Pharmacol69: 1663–1669.

    PubMed  Google Scholar 

  2. Civan MM, Shporer M (1978) NMR of sodium-23 and potassium-39 in biological systems. In Berliner LJ, Reuben J, eds.Biological Magnetic Resonance, New York: Plenum Press; 1–32.

    Google Scholar 

  3. Gupta RK, Gupta P, Moore RD (1984) NMR studies of intracellular metal ions in intact cells and tissues.Ann Rev Biophys Bioeng 13: 221–246.

    Google Scholar 

  4. Lai A, Saba G, Casu M, Dessi MA (1992) Analysis of sodium-23 nuclear magnetic resonance spin-lattice relaxation for the study of the intracellular sodium state.Biophys Chem 42: 73–77.

    PubMed  Google Scholar 

  5. Lyon RC, Pekar J, Moonen CTW, McLaughlin AC (1991) Double-quantum surface-coil NMR studies of sodium and potassium in rat brain.Magn Reson Med 18: 80–92.

    PubMed  Google Scholar 

  6. Pettegrew JW, Woessner DE, Minshew NJ, Glonek T (1984) Sodium-23 NMR analysis of human whole blood, erythrocytes, and plasma. Chemical shift, spin relaxation, and intracellular sodium concentration studies.J Magn Reson 57: 185–196.

    Google Scholar 

  7. Shinar H, Navon G (1984) NMR relaxation studies of intracellular Na+ in red blood cells.Biophys Chem 20: 275–283.

    PubMed  Google Scholar 

  8. Shinar H, Navon G (1986) Sodium-23 NMR relaxation times in body fluids.Magn Reson Med 3: 927–934.

    PubMed  Google Scholar 

  9. Fossarello M, Orzalesi N, Corongiu FP,et al. (1985)23Na NMR investigation of human lenses from patients with cataracts.FEBS Lett 184: 245–248.

    PubMed  Google Scholar 

  10. Garner WH, Hilal SK, Lee S-W, Spector A (1986) Sodium-23 magnetic resonance imaging of the eye and lens.Proc Natl Acad Sci USA 83: 1901–1905.

    PubMed  Google Scholar 

  11. Kohler SJ, Kolodny NH, D'Amico DJ,et al. (1989) Magnetic resonance Imaging determination of23Na visibility and T*2 in the vitreous body.J Magn Reson 82: 505–517.

    Google Scholar 

  12. Pettegrew JW, Glonek T, Minshew NJ, Woessner DE (1985) Sodium-23 NMR of intact bovine lens and vitreous humour.J Magn Reson 63: 439–444.

    Google Scholar 

  13. Stevens A, Paschalis P, Schleich T (1992) Sodium-23 and potassium-39 nuclear magnetic relaxation in eye lens. Examples of quadrupole ion magnetic relaxation in a crowded protein environment.Biophys J 61: 1061–1075.

    PubMed  Google Scholar 

  14. Duncan G (1974) In Davson H, Graham LT, Jr., eds.The Eye, vol. 5, pp. 357–398, London: Academic Press.

    Google Scholar 

  15. Harding JJ, Crabbe MJC (1984) In Davson H, ed.The Eye, vol. IB, 3rd ed., pp. 207–492, London: Academic Press.

    Google Scholar 

  16. Martin ML, Delpuech J, Martin GJ (1980)Practical NMR Spectroscopy, London: Heyden & Son Ltd; 244–290.

    Google Scholar 

  17. Fletcher R (1972) Report AERE R6799. London: Her Majesty's Stationery Office.

    Google Scholar 

  18. Press WM, Flannery BF, Teulosky SA, Wetterling WT (1988) Numerical Recipes in C. Cambridge: Cambridge University Press.

    Google Scholar 

  19. Shaw D (1976)Fourier Transform NMR Spectroscopy, Amsterdam: Elsevier; 297–344.

    Google Scholar 

  20. Oser BL (1965)Hawk's Physiological Chemistry, New York: McGraw-Hill Book Co.

    Google Scholar 

  21. Nordman J (1968)Biologie et chirurgie du corps vitre, Paris: Masson; 37–51.

    Google Scholar 

  22. Urry DW, Trapane TL, Venkatachalam CM, McMichens RB (1989) Ion interactions at membranous polypeptide sites using nuclear magnetic resonance: determining rate and binding constants and site locations.Methods Enzymol 171: 286–342.

    PubMed  Google Scholar 

  23. Monoi H (1985) Nuclear magnetic resonance of23Na ions interacting with the gramicidin channel.Biophys J 48: 643–662.

    PubMed  Google Scholar 

  24. Gullans SR, Avison MJ, Ogino T,et al. (1985) NMR measurement of intracellular sodium in the rabbit proximal tubule. Am J Physiol249: F160-F168.

    PubMed  Google Scholar 

  25. Hubbard PS (1970) Nonexponential nuclear magnetic relaxation by quadrupole interactions.J Chem Phys 53: 985–987.

    Google Scholar 

  26. Rooney WD, Barbara TM, Springer CS, Jr. (1988) Two-dimensional double-quantum NMR spectroscopy of iso-lated spin 3/2 systems:23Na examples.J Am Chem Soc 110: 674–681.

    Google Scholar 

  27. Forsen S, Drakenberg T, Wennerström H (1987) NMR studies of ion binding in biological systems.Q Rev Biophys 19: 83–114.

    PubMed  Google Scholar 

  28. Bull TE (1972) Nuclear magnetic relaxation of spin-3/2 nuclei involved in chemical exchange.J Magnet Reson 8: 344–353.

    Google Scholar 

  29. Engström S, Jönsson B, Impey RW (1984) Molecular dynamic simulation of quadrupole relaxation of atomic ions in aqueous solution.J Chem Phys 80: 5481–5486.

    Google Scholar 

  30. Shellock FG (1992) Thermal responses in human subjects exposed to magnetic resonance imaging. In Magin RL, Liburdy RP, Persson B, eds. Biological Effects and Safety Aspects of Nuclear Magnetic Resonance Imaging and Spectroscopy.Ann NYAcad Sci 649: 260–272.

    Google Scholar 

  31. Marciani L (1993) Ph.D. Thesis in Physics, University of Genova.

  32. Boada FE, Christensen JD, Huang-Hellinger FR,et al. (1994) Quantitative in vivo tissue sodium concentration maps: the effects of biexponential relaxation. Magn Reson Med32: 219–223.

    PubMed  Google Scholar 

  33. Grandjean J, Laszlo P (1991) Microdynamics of exchangeable lithium and sodium ions in laponite gels.J Magnet Reson 92: 404–408.

    Google Scholar 

  34. Boicelli CA, Marciani L, Baldassarri AM, Cammarata G (1994) Proton and sodium MRI of ocular tumours. Radiology 193(P): 350.

  35. Marciani L, Baldassarri AM, Mertel L,et al. (1995) Secondary hemangiosarcoma in canine eye. Proton and sodium MRI with histological correlation.Prog Vet Comp Ophthalmol 5: 13–18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boicelli, C.A., Giuliani, A.M. Sodium ion distribution in the vitreous body. MAGMA 4, 241–245 (1996). https://doi.org/10.1007/BF01772012

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01772012

Keywords

Navigation