Skip to main content
Log in

Detection of atrial-flutter and atrial-fibrillation waveforms by fetal magnetocardiogram

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Two cases of fetal tachycardia are reported: atrial flutter and fibrillation. The waveforms from each case were detected by fetal magnetocardiograms (FMCGs) using a 64-channel superconducting quantum interference device (SQUID) system. Because the magnitude of supraventricular arrhythmia signals is very weak, two subtraction methods were used to detect the fetal MCG waveforms: subtraction of the maternal MCG signal, and subtraction of the fetal QRS complex signal. It was found that atrial-flutter waveforms showed a cyclic pattern and that atrial-fibrillation waveforms showed f-waves with a random atrial rhythm. Fast Fourier transform analysis determined the main frequency of the atrial flutter to be about 7 Hz, and the frequency distribution of atrial fibrillation consisted of small, broad peaks. To visualise the current pattern, current-arrow maps, which simplify the observation of pseudo-current patterns in fetal hearts, of the averaged atrial flutter and fibrillation waveforms were produced. The map of the atrial flutter had a circular pattern, indicating a re-entry circuit, and the map of the atrial fibrillation indicated one wavelet, which was produced by a micro-re-entry circuit. It is thus concluded that an FMCG can detect supraventricular arrhythmia, which can be characterised by re-entry circuits, in fetuses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allessie, M. A., Bonke, F. I. M., andSchopman, F. J. G. (1977): ‘Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The ‘Leading circle’ concept: A new model of circus movement of cardiac tissue without the involvement of an anatomical obstacle’,Circ. Res.,41, pp. 9–18

    Google Scholar 

  • Hamada, H., Horigome, H., Asaka, M., Shigemitsu, S., Mitsui, T., Kubo, T., Kandori, A., andTsukada, K. (1999): ‘Prenatal diagnosis of long QT syndrome using fetal magnetocardiography’,Prenatal Diagnosis,19, pp. 677–680

    Article  Google Scholar 

  • Horigome, H., Takahashi, M. I., Asaka, M., Shigemitsu, S., Kandori, A., andTsukada, K. (2000): ‘Magnetocardiographic determination of the developmental changes in PQ, QRS and QT intervals in the foetus’,Acta Paediatrica,89, pp. 64–67

    Article  Google Scholar 

  • Horigome, H., Shiono, J., Shigemitsu, S., Asaka, M., Matsui, A., Kandori, A., Miyashita, T., andTsukada, K. (2001): ‘Detection of cardiac hypertrophy in the fetus by approximation of the current dipole using magnetocardiography’,Pediatr. Res.,50, pp. 242–245

    Google Scholar 

  • Hosaka, H., andCohen, D. (1976): ‘Visual determination of generators of the magnetocardiogram’,J. Electrocardiol.,9, pp. 426–432

    Article  Google Scholar 

  • Hosono, T., Chiba, Y., Shinto, M., Miyashita, S., Muramaki, K., Kandori, A., andTsukada, K. (2001a): ‘A case of fetal complete heart block recorded by magnetocardiography, ultrasonography and direct fetal electrocardiography’,Fetal Diagn. Ther.,16, pp. 38–41

    Article  Google Scholar 

  • Hosono, T., Chiba, Y., Shinto, M., Kandori, A., andTsukada, K. (2001b). ‘A fetal Wolff-Parkinson-White syndrome diagnosed prenatally by magnetocardiography’,Fetal Diagn. Ther.,16, pp. 215–217

    Article  Google Scholar 

  • Jaeggi, E., Fouron, J. C., andDrblik, S. P. (1998): ‘Fetal atrial flutter: Diagnosis, clinical features, treatment, and outcome’,J. Pediatr.,132, pp. 335–339

    Article  Google Scholar 

  • Kähler, C., Schleussner, E., Schneider, U., andSeewald, H. J. (2001): ‘Prenatal diagnosis of the Wolff-Parkinson-White-syndrome by fetal magnetocardiogram’,Br. J. Obstet. Gynaecol.,108, pp. 335–336

    Article  Google Scholar 

  • Kandori, A., Tsukada, K., Horigome, H., Asaka, M., Shigemitsu, S., Takahashi, M. I., Terada, Y., andMitsui, T. (1998). ‘Multichannel SQUID system for detecting fetal magnetocardiogram’. 2nd International Conference on Bioelectromagnetism, pp. 129–130

  • Kandori, A., Miyashita, T., Tsukada, K., Horigome, H., Asaka, M., Shigemitsu, S., Takahashi, M. I., Terada, Y., andMitsui, T. (1999a): ‘Sensitivity of foetal magnetocardiograms versus gestation week’,Med. Biol. Eng. Comput.,37, pp. 545–548

    Article  Google Scholar 

  • Kandori, A., Miyashita, T., Tsukada, K., Horigome, H., Asaka, M., Shigemitsu, S., Takahashi, M. I., Terada, Y., andMitsui, T. (1999b): ‘A vector fetal magnetocardiogram system with high sensitivity’,Rev. Scientif. Instrum.,70 (12), pp. 4702–4705

    Article  Google Scholar 

  • Kandori, A., Kanzaki, H., Miyatake, K., Hashimoto, S., Itoh, S., Tanaka, N., Miyashita, T., andTsukada, K. (2001a): ‘A method for detecting myocardial abnormality by using a total current-vector calculated from ST-segment deviation of a magnetocardiogram signal’,Med. Biol. Eng. Comput.,39, pp. 21–28

    Article  Google Scholar 

  • Kandori, A., Kanzaki, H., Miyatake, K., Hashimoto, S., Itoh, S., Tanaka, N., Miyashita, T., andTsukada, K. (2001b): ‘A method for detecting myocardial abnormality by using a current-ratio map calculated from an exercise-induced magnetocardiogram’,Med. Biol. Eng. Comput.,39, pp. 29–34

    Article  Google Scholar 

  • Kandori, A., Miyashita, T., Tsukada, K., Hosono, T., Miyashita, S., Chiba, Y., Horigome, H., Shigemitsu, S., andAsaka, M. (2001c): ‘Prenatal diagnosis of QT prolongation by fetal magnetocardiogram—Use of QRS and T-wave current-arrow maps—’,Physiol. Meas.,22(2), pp. 377–387

    Article  Google Scholar 

  • Kariniemi, V., Ahopelto, J., Karp, P. J., andKatila, T. E. (1974): ‘The fetal magnetocardiogram’,J. Perinat. Med.,2, pp. 214–216

    Article  Google Scholar 

  • Koning, K. T., Kirchhof, C. J., Smeets, J. R., Wellens, H. J., Penn, O. C., andAllessie, M. A. (1994): ‘High-density mapping of electrically induced atrial fibrillation in humans’,Circulation,89, pp. 1665–1680

    Google Scholar 

  • Leuthold, A., Wakai, R. T., andMartin, C. B. (1999): ‘Noninvasive in utero assessment of PR and QRS intervals from the fetal magnetocardiogram’,Early Human Development,54, pp. 235–243

    Article  Google Scholar 

  • Lewis, T., Feil, H. S. andStroud, W. D. (1920): ‘Observation upon flutter and fibrillation. Part II. The nature of auricular flutter’,Heart,7, pp. 191–245

    Google Scholar 

  • Menéndez, T., Achenbach, S., Moshage, W., Flüg, M., Beinder, E., Kollert, A., Bittel, A., andBachmann, K. (1998): ‘Pränatale registrierung fetaler Herzakionen mit magnetokardiographie’Z. Kardiolo.,87, pp. 111–118

    Article  Google Scholar 

  • Menéndez, T., Achenbach, S., Beinder, E., Hofbeck, M., Schmid, O., Singer, H., Moshage, W., andDaniel, W. G. (2000): ‘Prenatal diagnosis of QT prolongation by magnetocardiography’,PACE,23, pp. 1305–1307

    Google Scholar 

  • More, G. K., Rheinboldt, W. C., andAbildskov, J. A. (1964): ‘A computer model of atrial fibirillation’,Am. Heart J.,67, pp. 200–220

    Article  Google Scholar 

  • Nakaya, Y., Sumi, M., Saito, K., Fujino, K., Murakami, M., andMori, H. (1984): ‘Analysis of current source of the heart using isomagnetic and vector arrow maps’,Jpn. Heart J.,25(5), pp. 701–711

    Google Scholar 

  • Rassi, D., andLewis, M. J. (1995): ‘Power spectral analysis of the fetal magnetocardiogram’,Physiol. Meas.,16, pp. 111–120

    Article  Google Scholar 

  • Soyeur, D. J. (1996): ‘Atrial flutter in the human fetus: Diagnosis, hemodynamics cosequences, and therapy’,J. Cardiovasc. Electophysiol.,7, pp. 989–998

    Google Scholar 

  • Stambler, B. S., andEllenbogen, K. A. (1996): ‘Elucidating the mechanisms of atrial flutter cycle length variability using power spectral analysis techniques’,Circulation,94, pp. 2515–2525

    Google Scholar 

  • Van Leeuwen, P., Lange, S., Betterman, H., Grönemeyer, D. H. W., andHatzumann, W. (1999a): ‘Fetal heart rate variability and complexity in the course of pregnancy’,Early Human Develop.,54, pp. 235–243

    Article  Google Scholar 

  • Van Leeuwen, P., Hailer, B., Bader, W., Geissler, J., Trowitzsch, E., andGrönemeyer, D. H. W. (1999b): ‘Magnetocardiography in the diagnosis of fetal arrhythmia’,Brit. J. Obstet. Gynaecol.,106, pp. 1200–1208

    Google Scholar 

  • Wakai, T. R., Wang, M., Leuthold, C. A., andMartin, B. C. (1995): ‘Foetal magnetocardiogram amplitude oscillations associated with respiratory sinus arrhythmia’,Physiol. Meas.,16, pp. 49–54

    Article  Google Scholar 

  • Wakai, T. R., Wang, M., Leuthold, C. A., andMartin, B. C. (1998): ‘Atrial and ventricular fetal heart rate patterns in isolated congenital complete heart block detected by magnetocardiograph’,Am. J. Obstet. Gynecol.,179, pp. 258–260

    Article  Google Scholar 

  • Wakai, T. R., Lengle, M. J., andLeuthold, C. A. (2000): ‘Transmission of electric and magnetic foetal cardiac signals in a case of ectopia cordis: the dominant role of the vernix caseosa’,Phys. Med. Biol.,45, pp. 1989–1995

    Article  Google Scholar 

  • Yamada, S., Tsukada, K., Miyashita, T., Noguchi, Y., Ebashi, T., Terada, Y., Kuga, K., andYamaguchi, I. (2001): ‘Analysis of more complex arrhythmias using the tangential components of the cardiac magnetic field’.The 12th International Congress on Biomagnetism, Biomag 2000, pp. 514–517

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kandori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kandori, A., Hosono, T., Kanagawa, T. et al. Detection of atrial-flutter and atrial-fibrillation waveforms by fetal magnetocardiogram. Med Bio Eng Comput 40, 213–217 (2002). https://doi.org/10.1007/BF02348127

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02348127

Keywords

Navigation