Skip to main content
Log in

Laser-induced fluorescence used in localizing atherosclerotic lesions

  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

We have investigated laser-induced fluorescence frompost mortem human arteries in order to find spectroscopic properties allowing discrimination between normal and atherosclerotic vessel wall. A pulsed nitrogen laser emitting light at a wavelength of 337.1 nm was used as an excitation source. The fluorescence spectrum from 370 to 700 nm was captured and analysed by an optical multichannel analyser. Dimensionless contrast functions were formed by using characteristic spectral features at 390, 415, 480, 580 and 600 nm. All samples were investigated in scans across a region where normal as well as diseased vessel wall appeared. The types of plaque were histopathologically divided into four groups, of which three could be singled out using one or more of our spectroscopic criteria. We also investigated the different layers of the normal and diseased vessel wall in order to determine the various contributions to the fluorescence signal. Furthermore, plasma emission spectra were recorded while ablating the normal as well as the diseased vessel wall with an excimer laser, emitting radiation at 308 nm, thus detecting the change in spectral characteristics during the ablation process down into deeper layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Isner JM, Clarke RH. The current status of laser in treatment of cardiovascular disease.IEEE J Quant Electr 1984,QE-20:1406–20

    Article  Google Scholar 

  2. Geschwind H, Boussignac G, Teisseire B et al. Percutaneous transluminal angioplasty in man.Lancet 1984,i:844

    Article  Google Scholar 

  3. Choy DSJ. Vascular recanalization with laser catheter.IEEE J Quant Electr 1984,QE-20:1420–6

    Article  Google Scholar 

  4. Choy DSJ, Stertzer SH, Myler RK et al. Human coronary laser recanalization.Clin Cardiol 1984,7:377–81

    PubMed  CAS  Google Scholar 

  5. Isner JM, Steg PG, Clarke RH. Current status of cardiovascular laser therapy, 1987.IEEE J Quant Electr 1987,QE-23:1756–71

    Article  CAS  Google Scholar 

  6. Lammer J, Pilger E. Laser angioplasty by contact probes: experimental and clinical investigations.Lasers in Med Sci 1988, (Suppl.) July:328

    Google Scholar 

  7. Belli A-M, Cumberland DC. Percutaneous laser assisted angioplasty: initial results using the spectraprobe in peripheral arterial occlusions.Lasers in Med Sci 1988, (Suppl.) July:329

    Google Scholar 

  8. Grundfest WS, Litvack F, Forrester JS et al. Laser ablation of human atherosclerotic plaque without adjacent tissue injury.J Amer Coll Cardiol 1985,5:929–33

    CAS  Google Scholar 

  9. Isner JM, Donaldson RF, Deckelbaum LI. The excimer laser: Gross, light microscopic and ultrastructural analysis of potential advantages for use in laser therapy of cardiovascular disease.J Amer Coll Cardiol 1985,6:1102–9

    Article  CAS  Google Scholar 

  10. Deckelbaum LI, Isner JM, Donaldson RF. Use of pulsed energy delivery to minimize tissue injury resulting from carbon dioxide laser irradiation of cardiovascular disease.J Amer Coll Cardiol 1986,7:898–908

    CAS  Google Scholar 

  11. Wollenek G, Laufer G, Pinterits F et al. Excimer laser angioplasty: initial clinical results in total peripheral occlusion.Lasers in Med Sci 1988, (Suppl.) July:330

    Google Scholar 

  12. Erikson U, Helmius G, Hemmingsson A et al. Repeat femoral arteriography in hyperlipidemic patients.Acta radiologica 1988,29:303–9

    Article  PubMed  CAS  Google Scholar 

  13. Alfano RR, Darayash BT, Cordero J et al. Laser induced fluorescence spectroscopy from native cancerous and normal tissue.IEEE J Quant Electr 1984,20:1507–11

    Article  Google Scholar 

  14. Yanming Ye, Yuanlong Yang, Yufen Li, Fuming Li. Characteristic autofluorescence for cancer diagnosis and the exploration of its origin.Technical Digest, Conference on Lasers and Electro-Optics (CLEO), Baltimore, MA, USA 1985:84

  15. Kato H, Cortese DA. Early detection of lung cancer by means of hematoporfyrin derivative fluorescence and laser radiation.Clin Chest Med 1985,6:237–53

    PubMed  CAS  Google Scholar 

  16. Profio AE, Doiron DR, Sarnaik J. Fluorometer for endoscopic diagnosis of tumors.Med Phys 1984,11:516–20

    Article  PubMed  CAS  Google Scholar 

  17. Kittrell C, Willett RL, le los Santos-Pacheo C et al. Diagnosis of fibrous arterial atherosclerosis using fluorescence.Appl Opt 1985,24:2280–1

    Article  PubMed  CAS  Google Scholar 

  18. Cothren RM, Hayes GB, Kramer JR et al. A multifiber catheter with an optical shield for laser angioplasty.Lasers in the Life Sci 1986,1:1–12

    Google Scholar 

  19. Sartori M, Sauerbrey R, Kubodera S. Autofluorescence maps of atherosclerotic human arteries—a new technique in medical imaging.IEEE J Quant Electr 1987,23:1794–7

    Article  Google Scholar 

  20. Oraevsky AA, Letokhov VS, Omelyanenko VG et al. Laser spectral analysis of human atherosclerotic vessels. In: Persson W, Svanberg S (eds)Laser Spectroscopy VIII, Springer Series in Optical Sciences. Berlin: Springer 1987:370–1

    Google Scholar 

  21. Andersson PS, Gustafson A, Stenram U et al. Diagnosis of arterial atherosclerosis using laser-induced fluorescence.Lasers in Med Sci 1987,2:261–6

    Article  Google Scholar 

  22. Deckelbaum LI, Sarembock IJ, Stetz ML et al.In-vivo fluorescence spectroscopy of normal and atherosclerotic arteries.Proceedings of the Conference on Optical Fibers in Medicine III. Los Angeles, CA, USA: SPIE-The International Society for Optical Engineering 1988:314

    Google Scholar 

  23. Blankenhorn DH, Freiman DG, Knowles HC. Carotenoids in man. The distribution of epiphasic carotenoids in atherosclerotic lesions.J Clin Invest 1958,35:1243–7

    Article  Google Scholar 

  24. Blankenhorn DH, Braunstein H. Carotenoids in man III. The microscopic pattern of fluorescence in atheromas and its relation to their growth.J Clin Invest 1958,37:160–5

    Article  PubMed  CAS  Google Scholar 

  25. Blankenhorn DH. The infiltration of carotenoids into human atheromas and xanthomas.Ann Intern Med 1960,35:944–54

    Google Scholar 

  26. Prince MR, Deutsch TF, Mathews-Roth MM et al. Preferential light absorption in atheromas in vitro.J Clin Invest 1986,78:295–302

    Article  PubMed  CAS  Google Scholar 

  27. Prince MR, LaMuraglia GM, MacNicol EF Jr. Increased preferential absorption in human atherosclerotic plaque with oral beta carotene: implications for laser endarterectomy.Lasers in Med Sci 1988, (Suppl.) July:184

    Google Scholar 

  28. Spokojny AM, Serur JR, Skillman J, Spears JR. Uptake of hematoporphyrinderivative by atheromatous plaques: studies in human in vitro and rabbit in vivo.J Amer Coll of Cardiol (JACC) 1986,8:1387–92

    Article  CAS  Google Scholar 

  29. Kessel D, Sykes E. Porphyrin accumulation by atheromatous plaques of the aorta.Photochem Photobiol 1984,40:59–61

    Article  PubMed  CAS  Google Scholar 

  30. Montán S, Svanberg K, Svanberg S. Multicolor imaging and contrast enhancement in cancer-tumor localization using laser-induced fluorescence in hematoporphyrinderivative-bearing tissue.Opt Lett 1985,10:56–8

    Article  PubMed  Google Scholar 

  31. Andersson PS, Montán S, Svanberg S. Multispectral system for medical fluorescence imaging.IEEE J Quant Electr 1987,23:1798–1805

    Article  Google Scholar 

  32. Hohla K, Laufer G, Wollenek G et al. Simultaneous tissue identification and ablation with excimer laser.Proceedings of The International Society for Optical Engineering. Los Angeles, CA, USA: (SPIE) 1988,908:129–36

    Google Scholar 

  33. Richards-Kortum RR, Mehta A, Kolubayev T et al. Spectroscopic diagnosis for control of laser treatment of atherosclerosis. In: Persson W, Svanberg S (eds)Laser Spectroscopy VIII, Springer Series in Optical Sciences. Berlin: Springer 1987:366–9

    Google Scholar 

  34. Svanberg K, Kjellén E, Ankerst J et al. Fluorescence studies of hematoporphyrin derivative in normal and malignant rat tissue.Cancer Research 1986,46:3803–8

    PubMed  CAS  Google Scholar 

  35. Andersson-Engels S, Johansson J, Svanberg S et al., to appear.

  36. Boulnois J-L. Photophysical processes in recent medical laser developments: a review.Lasers in Med Sci 1986,1:47–66

    Article  Google Scholar 

  37. Boulnois J-L. Photophysical processes in laser-tissue interactions. In: Ginzburg R (ed)Laser Applications in Cardiovascular Diseases. New York: Futura 1987

    Google Scholar 

  38. Kirschenbaum DM.Atlas of protein spectra in the ultraviolet and visible regions. New York: IFI/Plenum Data Corporation 1974:266

    Google Scholar 

  39. Richards-Kortum RR, Mehta A, Kolubayev T et al. Role of collection geometry in spectral diagnosis of atherosclerosis.Proceedings at CLEO'88. Anaheim, CA, USA, 1988:366–7

  40. Andersson-Engels S, Ankerst J, Montan S et al. Aspects of tumour demarcation in rats by means of laser induced fluorescence and haematoporphyrin derivatives.Lasers in Med Sci 1988,3:239–48

    Article  Google Scholar 

  41. Measures RM.Lasers Remote Sensing: Fundamentals and Applications. New York: Wiley 1984

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersson-Engels, S., Gustafson, A., Johansson, J. et al. Laser-induced fluorescence used in localizing atherosclerotic lesions. Laser Med Sci 4, 171–181 (1989). https://doi.org/10.1007/BF02032432

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02032432

Key words

Navigation