Skip to main content
Log in

Quantitative analysis of the neuronal population of the red nucleus of the cat

  • Original Articles
  • Published:
The Italian Journal of Neurological Sciences Aims and scope Submit manuscript

Abstract

There is strong evidence in the literature for a correlation between the two parts of the red nucleus, magnocellular and parvocellular, and different functions. Unfortunately in the cat, the species most studied both physiologically and anatomically, there are no morphological criteria distinguishing the two portions. With quantitative techniques applied to Nissl preparations the neuronal population of the Red Nucleus has been studied in serial sections along the rostrocaudal axis of the mesencephalon of the cat. Statistical analysis of the data revealed a horizontal plane dividing the two portions of the nucleus with a high statistical significance level. This plane lies between the caudal two-thirds and the rostral third of the nucleus. Although in the model two portions can be distinguished, it is not possible to assign to either a single type of neuron, whether or considered in terms of shape or size.

Sommario

Vi è buona evidenza in letteratura che la presenza di due componenti, magno-e parvo-cellulare, nel Nucleo Rosso dei mammiferi è correlabile con parti funzionalmente differenti. Sfortunatamente nel gatto, la specie maggiormente studiata sia fisiologicamente che anatomicamente, mancano criteri morfologici di distinzione fra le due parti.

Applicando tecniche quantitative su preparati Nissl, è stata studiata la popolazione cellulare del Nucleo Rosso in sezioni seriate lungo l'asse rostro-caudale del mesencefalo. Mediante una analisi statistico-matematica dei dati raccolti si è potuto dimostrare con un ottimo livello di significatività un piano orizzontale di divisione in due parti del nucleo. Questo piano risulta posto fra i due terzi caudali ed il terzo rostrale del nucleo.

Pur riconoscendo due parti distinte nel modello ottenuto, non è però possibile assegnare a ciascuna di esse un tipo esclusivo di elemento cellulare, sia considerando la forma sia considerando la dimensione dei neuroni.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams J.C.:Technical considerations on the use of horseradish peroxidase as a neuronal marker. Neuroscience, 2: 141–145, 1977.

    CAS  PubMed  Google Scholar 

  2. Anderson M.E.:Cerebellar and cerebral inputs to physiologicaly identified efferent cell groups in the red nucleus of the cat. Brain Res., 30: 49–66, 1971.

    Article  CAS  PubMed  Google Scholar 

  3. Angault P., Bowsher D.:Cerebello-rubral conexions in the cat. Nature 208: 1002–1003, 1965.

    Google Scholar 

  4. Baldissera F., Bruggencate G., Lundberg A.:Rubrospinal monosynaptic connexion with last-order interneurones of polysynaptic reflex paths. Brain Res., 27: 390–392, 1971.

    Article  CAS  PubMed  Google Scholar 

  5. Baldissera F., Lundberg A., Udo M.:Stimulation of pre-and postsynaptic elements in the red nucleus. Exp. Brain Res., 15: 151–167, 1972.

    CAS  PubMed  Google Scholar 

  6. Brodal A., Gogstad A. Chr.:Rubrocerebellar connections. An experimental study in the cat. Anat. Rec., 118: 455–486, 1954.

    Article  CAS  PubMed  Google Scholar 

  7. Brown L.T.:Corticorubral projections in the rat. J. Comp. Neurol., 154: 149–168, 1974.

    CAS  PubMed  Google Scholar 

  8. Caughell K.A., Flumerfelt B.A.:The organization of the cerebellorubral projection: an experimental study in the cat. J. Comp. Neurol., 176: 295–306, 1977.

    Article  CAS  PubMed  Google Scholar 

  9. Condè F., Condè H.:Etude de la morphologie des cellules du noyau rouge du chat par la méthode de Golgi-Cox. Brain Res., 53: 249–271, 1973.

    PubMed  Google Scholar 

  10. Courville J.:Somatotopical organization of the projection from the nucleus interpositus anterior of the cerebellum to the red nucleus. An experimental study in the cat with silver impregnation method. Exp. Brain Res., 2: 191–215, 1966.

    Article  CAS  PubMed  Google Scholar 

  11. Courville J., Otabe S.:The rubro-olivary projection in the Macaque: An experimental study with silver impregnation methods. J. Comp. Neurol., 158: 479–494, 1974.

    Article  CAS  PubMed  Google Scholar 

  12. Cullheim S., Kellerth J.O.:Combined light and electron microscopic tracing of neurons, including axons and synaptic terminals, after intracellular injection of horseradish peroxidase. Neurosci. Lett., 2: 307–313, 1976.

    Article  Google Scholar 

  13. Davenport H.A., Ranson S.W.:The red nucleus and adjacent cell groups. A topographical study in the cat and in the rabbit. Arch. Neurol. Psychiat., 24: 257–266, 1930.

    Google Scholar 

  14. Eccles J.C., Scheid P., Tavorikova H.:Responses of red nucleus neurones to cutaneous afferent inputs. Brain Res., 53: 440–444, 1973.

    Article  CAS  PubMed  Google Scholar 

  15. Eccles J.C., Scheid P., Taborikova H.:Responses of red nucleus neurons to antidromic and synaptic activation. J. Neurophysiol., 38: 947–964, 1975.

    CAS  PubMed  Google Scholar 

  16. Edwards S.B.:The ascending and descending projections of the red nucleus in the cat: an experimental study using an autoradiographic tracing method. Brain Res., 48: 45–63, 1972.

    Article  CAS  PubMed  Google Scholar 

  17. Endo K., Araki T., Kaway Y.:Contra-and ipsilateral cortical and rubral effects on fast and slow spinal motoneurons of the cat. Brain Res., 88: 91–98, 1975.

    Article  CAS  PubMed  Google Scholar 

  18. Flumerfelt B.A., Otabe S., Courville J.:Distinct projections to the red nucleus from dentate and interpositus nuclei in the monkey. Brain Res., 50: 408–414, 1973.

    Article  CAS  PubMed  Google Scholar 

  19. Flumerfelt B.A.:Organization of the mammalian red nucleus and its interconnections with the cerebellum. Experientia, 34: 1178–1180, 1978.

    Article  CAS  PubMed  Google Scholar 

  20. Ghes C.:Input-output relations of the red nucleus in the cat. Brain Res., 98: 93–108, 1975.

    Google Scholar 

  21. Grofova I., Marsala J.:Nucleus ruber of the cat. Morfologie, 9: 209–220, 1961.

    Google Scholar 

  22. Huffman R.D., Davis R.:Pharmacology of the brachium conjunctivum: red nucleus synaptic system in the baboon. J. Neurosci. Res., 3: 175–192, 1977.

    Article  CAS  PubMed  Google Scholar 

  23. King G.S., Martin G.F., Conner J.B.:A light and electron microscopic study of corticorubral projections in the opossum, Didelphis Marsupialis Virginiana. Brain Res., 38: 251–265, 1972.

    Article  CAS  PubMed  Google Scholar 

  24. LaVail J.H., LaVail M.M.: Retrograde axonal transport in the central nervous system. Science, N.Y., 176: 1416–1417, 1972.

    CAS  Google Scholar 

  25. Malmgren L., Olsson Y.:A sensitive method for histochemical demonstration of horseradish peroxidase in neurons following retrograde axonal transport. Brain Res., 148: 279–294, 1978.

    Article  CAS  PubMed  Google Scholar 

  26. Massion J.:The Mammalian red nucleus. Phusiol. Rev., 147: 383–436, 1967.

    Google Scholar 

  27. Miller R.A., Strominger N.L.:An experimental study of the efferent connections of the superior cerebellar peduncle in the rhesus monkey. Brain Re., 133: 237–250, 1977.

    CAS  Google Scholar 

  28. M C. von:Der rote kern der Saugetiere und des Menschen. Neurol. Zentr., 724–727, 1910.

  29. Murakami F., Tsukahara N., Fujito Y.:analysis of unitary EPSPs mediated by the newlyformed cortico-rubral synapses after lesion of the nucleus interpositus of the cerebellum. Exp. Brain Res., 30: 233–243, 1977.

    CAS  PubMed  Google Scholar 

  30. Murakami F., Tsukahara N., Fujito Y.:Properties of the synaptic transmission of the newly formed cortico-rubral synapses after lesion of the nucleus interpositus of the cerebellum. Exp. Brain Res., 30: 245–258, 1977.

    CAS  PubMed  Google Scholar 

  31. Nakamura V., Mizuno N., Konishi A.:A quantitative electron miscroscopic study of cerebellar axon terminals on the magnocellular red nucleus neurons in the cat. Brain Res., 147: 17–27, 1978.

    Article  CAS  PubMed  Google Scholar 

  32. O'Brien J.H., Condè H.:Functional organization of the anterior red nucleus. Brain Res., 21: 345–365, 1970.

    Article  PubMed  Google Scholar 

  33. Oka H., Jinnai K.:Electrophysiological study of parvocellular red nucleus neurons. Brain Res., 149: 239–246, 1978.

    Article  CAS  PubMed  Google Scholar 

  34. Padel Y., Steinberg R.:Red nucleus cell activity in awake cats during a placing reaction. J. Physiol., Paris, 74: 265–282, 1978.

    CAS  Google Scholar 

  35. Pizzini G., Tredici G., Miani A.:Corticorubral projection in the cat. An experimental electron microscopic study. J. Submicrosc. Cytol., 7: 231–238, 1975.

    Google Scholar 

  36. Pompeiano O., Brodal A.:Experimental demonstration of a somatotopical origin of rubro-spinal fibers in the cat. J. Comp. Neurol., 108: 225–259, 1957.

    CAS  PubMed  Google Scholar 

  37. Rinvik E., Walberg F.:Demonstration of a somatotopically arranged cortico-rubral projection in the cat. An experimental study with silver methods. J. Comp. Neurol., 120: 393–407, 1963.

    Article  CAS  PubMed  Google Scholar 

  38. Sadun A.:Differential distribution of cortical termination in the cat red nucleus. Brain Res., 99: 145–151, 1975.

    Article  CAS  PubMed  Google Scholar 

  39. Sadun A., Pappas G.D.:Development of distinct cell types in the feline red nucleus: a Golgi-Cox and electron microscopic study. J. Comp. Neurol., 182: 325–366, 1978.

    Article  CAS  PubMed  Google Scholar 

  40. Ttredici G., Pizzini G., Miani A.:The ultrastructure of the red nucleus of the cat. J. Submicrosc. Cytol., 5: 29–48, 1973.

    Google Scholar 

  41. Tredici G., Pizzini G., Miani A.:Cortico-and cerebello-rubral projections in the cat. Acta Anatomica, 99: 299, 1977.

    Google Scholar 

  42. Tsukahara N., Toyama K., Kosaka K.:Electrical activity of red nucleus neurons investigated with intracellular microelectrodes. Exp. Brain Res., 4: 18–33, 1967.

    Article  CAS  PubMed  Google Scholar 

  43. Tsukahara N., Kosaka K.:The mode of cerebral activation of the red nucleus neurons. Exp. Brain Res., 5: 102–117, 1968.

    Article  CAS  PubMed  Google Scholar 

  44. Tsukahara N., Fuller D.R.G.:Conductance changes during piramidally induced post-synaptic potentials in red nucleus neurons. J. Neurophysiol., 32: 35–42, 1969.

    CAS  PubMed  Google Scholar 

  45. Tsukahara N.:Synaptic plasticity in the red nucleus neurons. J. Physiol., Paris, 74: 339; 345, 1978.

    Google Scholar 

  46. Wilson C.J., Groves P.M.:A simple and rapid section embedding technique for sequential light and electron microscopic examination of individually stained central neurons. J. Neurosci. Meth., 1: 383–391, 1979.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrario, V.F., Miani, A., Pizzini, G. et al. Quantitative analysis of the neuronal population of the red nucleus of the cat. Ital J Neuro Sci 2, 43–51 (1981). https://doi.org/10.1007/BF02351686

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02351686

Key-Words

Navigation