Skip to main content

Advertisement

Log in

Lattice parameters and cation distribution of solid solutions of calcium and strontium hydroxyapatite

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Solid solutions of strontium and calcium hydroxyapatite were synthesized by solid-state reaction. Lattice parameters of these compounds were determined using two types of Guinier cameras. They vary linearly with the molar percentage of strontium hydroxyapatite. The distribution of Ca and Sr ions over the fourfold and sixfold positions in the apatite structure was determined by comparing experimental and calculated values for the intensity ratios of suitable reflections. A slight, although significant, preference of Sr for the sixfold position was found. An ideal behavior is predicted for these solid solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elliott, J.C.: The problems of the composition and structure of the mineral components of the hard tissues, Clin. Orthop.93:313–345, 1973

    PubMed  CAS  Google Scholar 

  2. Baud, C.A., Moghisti-Buchs, M.: Étude par diffraction dans rayon X de la fixation in vivo du strontium dans la substance minérale osseuse, C.R. Acad. Sci. [D] (Paris)260:5390, 1965

    CAS  Google Scholar 

  3. Baud, C.A., Very, J.M.: Ionic substitutions in vivo in bone and tooth apatite crystals. In: Colloques Internationaux C.N.R.S., No. 230, Physico-chimie et cristallographie des apatites d’intérêt biologique, 1975, pp. 405–410

  4. Münzenberg, K.J., Gebhardt, M.: Crystalline calcium phosphates of the bone. In K.H. Erben (ed.): Biomineralisation Research Reports, pp. 91–95. F.K. Schattauer Verlag, Stuttgart, 1970

    Google Scholar 

  5. Neuman, W.F., Bareham, B.J.: Evidence for the presence of secondary calcium phosphate in bone and its stabilisation by acid production, Calcif. Tissue Res.12:161–172, 1975

    Google Scholar 

  6. Rouffose, A., Sabine, W., Landis, W., Glimcher, M.J.: X-ray diffraction identification in newly mineralized embryonic chick bone, Trans. 23rd Ann. Meeting Orthop. Res. Soc.2:87, 1977

    Google Scholar 

  7. Lénart, G., Bidlo, G., Pinter, J.: Use of X-ray diffraction method in investigations on mineral substances of bone and callus, Acta Biochim. Biophys. Acad. Sci. Hung.3:305–316, 1968

    Google Scholar 

  8. Driessens, F.C.M.: Physico-chemical interaction between biominerals and their environment, Ber. Bunsenges. Phys. Chem.82:312–320, 1978

    CAS  Google Scholar 

  9. Sobel, A.E., Cohen, J., Kramer, B.: The nature of the injury to the calcifying mechanism in rickets due to strontium, Biochem. J.29:2640–2645, 1935

    CAS  PubMed  Google Scholar 

  10. Sobel, A.E., Cohen, J., Kramer, B.: Phosphatase activity and calcification in strontium rickets, Biochem. J.29:2646–2650, 1935

    CAS  PubMed  Google Scholar 

  11. Sobel, A.E., Goldenberg, H., Hanok, A.: Influence of strontium and magnesium ions of calcification in vitro, Proc. Soc. Exp. Biol. Med.78:716–718, 1951

    PubMed  CAS  Google Scholar 

  12. Likins, R.C., McCann, H.G., Posner, A.S.: Comparative fixation of calcium and strontium by synthetic hydroxyapatite, IADR Abstracts 1970, p 32

  13. Feith, R., Slooff, T.J.J.H., Kazem, I., van Rens, T.J.G.: Strontium87mSr bone scanning for the evaluation of total hip replacement, J. Bone Joint Surg58B:79–83, 1978

    Google Scholar 

  14. Jowsey, J., Balasubramaniam, P.: Effect of phosphate supplements on soft tissue calcification and bone turnover, Clin. Sci.42:289–299, 1972

    PubMed  CAS  Google Scholar 

  15. Rygh, O.: Recherches sur les oligo-éléments I—De l’importance du strontium, du baryum et du zinc, Bull. Soc. Chim. Biol.31:1052–1061, 1949

    CAS  Google Scholar 

  16. Joseph, M., Gedalia, I., Fuks, A.: Effect of strontium and fluoride administration on caries resistance of hamster molars, J. Dent. Res.56:924, 1977

    PubMed  CAS  Google Scholar 

  17. Gedalia, I., Almog, D., Yariv, S.: Effects of strontium and fluoride uptakes on the solubility of powdered enamel, Caries Res.11:287–292, 1977

    Article  PubMed  CAS  Google Scholar 

  18. Rosenthal, H.L., Austin, S.A., Moreno Eves, M.G.: Strontium-90 content of sound and carious human deciduous teeth, Arch. Oral Biol.13:357–360, 1968

    Article  PubMed  CAS  Google Scholar 

  19. Sanfourche, A., Focet, B.: Bull. Soc. Chim. Fr.53:974 (1933), cited by: S. Eisenberger, A. Lehrmann, and W.D. Turner: The basic calcium phosphates and related systems. Some theoretical and practical aspects, Chem. Rev.26:257–296, 1940

    CAS  Google Scholar 

  20. Newesley, H.: Personal communication.

  21. Schnell, E., Kiesewitter, W., Kim, Y.H., Hayek, E.: Zur Kenntnis der Orthostrontiumphosphate, Monatsschr. Chem.102:1327–1336, 1971

    Article  CAS  Google Scholar 

  22. Lorah, J.R., Tartar, H.V., Wood, L.: A basic phosphate of calcium and of strontium and the adsorption of calcium hydroxide by phosphate and by tricalcium phosphate, J. Am. Chem. Soc.51:1097–1106, 1929

    Article  CAS  Google Scholar 

  23. Collin, R.L.: Strontium-calcium hydroxyapatite solid solutions: preparation and lattice constant measurements, J. Am. Chem. Soc.81:5275–5278, 1959

    Article  CAS  Google Scholar 

  24. Hayek, E., Petter, H.: Mischkristallbildung der Hydroxylapatite von Calcium und Strontium, Monatsschr. Chem.91:356–358, 1960

    Article  CAS  Google Scholar 

  25. Akhavan-Niaki, A.N., Wallaeys, R.: Préparation des fluorapatites strontique et barytique et de solutions solides et fluorapatites alcalino-terreuses par réaction dans l’état solide, C.R. Acad. Sci. [D] (Paris)246:1556–1559, 1958

    CAS  Google Scholar 

  26. Narasaraju, T.S.B., Chickerur, N.S., Singh, R.P.: pH-dependence of solubilities of solid solutions of calcium and strontium hydroxylapatites, J. Inorg. Nucl. Chem.33:3194–3197, 1971

    Article  CAS  Google Scholar 

  27. Dedhiya, M.G., Young, F., Higuchi, W.I.: Mechanism for the retardation of the acid dissolution rate of hydroxyapatite by strontium, J. Dent. Res.52:1097–1109, 1973

    PubMed  CAS  Google Scholar 

  28. Dedhiya, M.G., Young, F., Higuchi, W.I.: Mechanism of hydroxyapatite dissolution. The synergistic effects of solution fluoride, strontium and phosphate, J. Phys. Chem.78:1273–1279, 1974

    Article  CAS  Google Scholar 

  29. Herbison, R.J., Franceschi, C.E., Handelman, S.L.: Relationship of fluoride and strontium on hydroxyapatite dissolution byS. mutans, IADR abstracts, 1976, p 954

  30. Verbeeck, R.M.H., Hauben, M., Thun, H.P., Verbeek, F.: Solubility and solubility behavior of strontiumhydroxyapatite, Z. Phys. Chem. (in press).

  31. Verbeeck, R.M.H.: In preparation.

  32. Driessens, F.C.M.: Thermodynamics and defect chemistry of some oxide solid solutions. Part III. Defect equilibria and the formalism of pair interactions, Ber. Bunsenges. Phys. Chem.72:1123–1133, 1968

    CAS  Google Scholar 

  33. Young, R.A.: Biological apatite vs. hydroxyapatite at the atomic level, Clin. Orthop.113:249–262, 1975

    PubMed  CAS  Google Scholar 

  34. Avnimelech, Y., Moreno, E.C., Brown, W.E.: Solubility and surface properties of finely divided hydroxyapatite, J. Res. Natl. Bur. Stand.77A:149–155, 1973

    Google Scholar 

  35. Sudarsanan, K., Young, R.A.: Significant precision in crystal structure details: Holy Springs hydroxyapatite, Acta Cryst.B25:1534–1543, 1969

    Google Scholar 

  36. Posner, A., Perloff, A., Diorio, A.F.: Refinement of the hydroxyapatite structure, Acta Cryst.11:308–309, 1958

    Article  CAS  Google Scholar 

  37. Lagergren, C., Carlström, D.: Crystallographic studies of calcium-and strontiumhydroxyapatites, Acta Chem. Scand.11:545–550, 1957

    Article  CAS  Google Scholar 

  38. De Wolff, ASTM Powder diffraction file, 9-432.

  39. Ropp, ASTM Powder diffraction file, 14-691.

  40. Aoki, I.: Activities of the components in the system Co3O4-Mn3O4, J. Phys. Soc. Jpn.17:53–61, 1961

    Article  Google Scholar 

  41. Kinsman, D.J.J., Holland, H.D.: The co-precipitation of cations with CaCO3. IV. The coprecipitation of Sr2+ with aragonite between 16° and 96°C, Geochim. Cosmochim. Acta33:1–17, 1969

    Article  CAS  Google Scholar 

  42. Sudarsanan, K., Young, R.A.: Structure of strontiumhydroxidephosphate, Acta Cryst.B28:3668, 1972

    Google Scholar 

  43. Wallaeys, R.: Contribution à l’étude des apatites phosphocalciques, Ann. Chim.7:808, 1952

    CAS  Google Scholar 

  44. Bhatnagar, V.M.: The cell parameters of strontiumhydroxyapatite, Rev. Roum. Chim.15:951, 1970

    CAS  Google Scholar 

  45. Akhavan Niaki, A.N.: Synthesis and properties of strontium-and bariumapatites, Bull. Soc. Chim. Fr. 705, 1960

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heijligers, H.J.M., Driessens, F.C.M. & Verbeeck, R.M.H. Lattice parameters and cation distribution of solid solutions of calcium and strontium hydroxyapatite. Calcif Tissue Int 29, 127–131 (1979). https://doi.org/10.1007/BF02408067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02408067

Key words

Navigation