Skip to main content
Log in

Action of diphtheria toxin does not depend on the induction of large, stable pores across biological membranes

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Vero cells exposed to diphtheria toxin at pH 4.5 leak monovalent cations but not amino acids or phosphorylated metabolites; affected cells do not take up trypan blue. Monovalent cation leakage is inhibited by 1mmCd2+, but not by 1mmZn2+ or Ca2+. Cd2+ blocks calcein leakage from liposomes and closes diphtheria toxin-induced channels in lipid bilayers. It is concluded that translocation of the A fragment of diphtheria toxin across biological membranes does not depend on the formation of large stable pores, but that small Cd2+-sensitive pores may play a role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alving, C.R., Iglewski, B.H., Urban, K.A., Moss, J., Richards, R.L., Sadoff, J.C. 1980. Binding of diphtheria toxin to phospholipids in liposomes.Proc. Natl. Acad. Sci. USA 77:1986–1990

    Google Scholar 

  • Bashford, C.L., Alder, G.M., Graham, J.M., Menestrina, G., Pasternak, C.A. 1988a. Ion modulation of membrane permeability: Effect of cations on intact cells and on cells and phospholipid bilayers treated with pore-forming agents.J. Membrane Biol. 103:79–94

    Google Scholar 

  • Bashford, C.L., Alder, G.M., Menestrina, G., Micklem, K.J., Murphy, J.J., Pasternak, C.A. 1986. Membrane damage by haemolytic viruses, toxins, complement and other cytotoxic agents: A common mechanism blocked by divalent cations.J. Biol. Chem. 261:9300–9308

    Google Scholar 

  • Bashford, C.L., Alder, G.M., Patel, K., Pasternak, C.A. 1984. Common action of certain viruses, toxins, and activated complement: Pore formation and its prevention by extracellular Ca2+.Biosci. Rep. 4:797–805

    Google Scholar 

  • Bashford, C.L., Menestrina, G., Henkart, P.A., Pasternak, C.A. 1988b. Cell damage by cytolysin: Spontaneous recovery and reversible inhibition by divalent cations.J. Immunol. 141:3965–3974

    Google Scholar 

  • Bashford, C.L., Micklem, K.J., Pasternak, C.A. 1985. Sequential onset of permeability changes in mouse ascites cells induced by Sendai virus.Biochim. Biophys. Acta 814:247–255

    Google Scholar 

  • Bhakdi, S., Tranum-Jensen, J. 1984. Mechanism of complement cytolysis and the concept of channel-forming proteins.Philos. Trans. R. Soc. Lond. 306:311–324

    Google Scholar 

  • Bhakdi, J., Tranum-Jensen, J. 1987. Damage to mammalian cells by proteins that form transmembrane pores.Rev. Biochem. Pharmacol. 107:148–223

    Google Scholar 

  • Bhakdi, J., Tranum-Jensen, J. 1988. Damage to cell membranes by pore-forming bacterial cytolysins.Prog. Allergy 40:1–43

    Google Scholar 

  • Blumenthal, R., Millard, P.J., Henkart, M.P., Reynolds, C.W., Henkart, P.A. 1984. Liposomes as targets for granule cytolysin from cytotoxic LGL tumors.Proc. Natl. Acad. Sci. USA 81:5551–5555

    Google Scholar 

  • Christensen, H.N. 1984. Organic ion transport during seven decades. The amino acids.Biochim. Biophys. Acta. 779:255–269

    Google Scholar 

  • Collier, R.J. 1975. Diphtheria toxin: Mode of action and structure.Bacteriol. Rev. 39:54–79

    Google Scholar 

  • Donovan, J.J., Middlebrook, J.L. 1986. Ion-conducting channels produced by botulinum toxin in planar lipid membranes.Biochemistry 25:2872–2876

    Google Scholar 

  • Donovan, J.J., Simon, M.I., Draper, R.K., Montal, M. 1981. Diphtheria toxin forms transmembrane channels in planar lipid bilayers.Proc. Natl. Acad. Sci. USA 78:172–176

    Google Scholar 

  • Donovan, J.J., Simon, M.I., Montal, M. 1982. Insertion of diphtheria toxin into and across membranes: Role of phosphoinositide asymmetry.Nature (London) 298:669–972

    Google Scholar 

  • Drazin, R., Kandel, J., Collier, R.J. 1971. Structure and activity of diphtheria toxin. II. Attack by trypsin at a specific site within the intact toxin molecule.J. Biol. Chem. 246:1504–1510

    Google Scholar 

  • Gambale, F., Montal, M. 1988. Characterization of the channel properties of tetanus toxin in planar lipid bilayers.Biophys. J. 53:771–783

    Google Scholar 

  • Henkart, P.A. 1985. Mechanism of lymphocyte-mediated cytotoxicity.Annu. Rev. Immunol. 3:31–58

    Google Scholar 

  • Hille B. 1984. Ionic Channels of Excitble Membranes. pp. 318–320. Sinauer Associates. Sunderland, Massachusetts

    Google Scholar 

  • Hoch, D.H., Romero-Mira, M., Ehrlich, B.E., Finkelstein, A., Dasgupta, B.R., Simpson, L.L. 1985. Channels formed by botulinum, tetanus and diphtheria toxins in planar lipid bilayers: Relevance to translocation of proteins across membranes.Proc. Natl. Acad. Sci. USA 82:1692–1696

    Google Scholar 

  • Holmgren, J. 1981. Action of cholera toxin and the prevention and treatment of cholera.Nature (London) 292:413–417

    Google Scholar 

  • Impraim, C.C., Foster, K.A., Micklem, K.J., Pasternak, C.A. 1980. Nature of virally-mediated changes in membrane permeability to small molecules.Biochem. J. 186:847–860

    Google Scholar 

  • Kagan, B.L., Finkelstein, A., Colombini, M. 1981. Diphtheria toxin fragment forms large pores in phospholipid bilayer membranes.Proc. Natl. Acad. Sci. USA 78:4950–4958

    Google Scholar 

  • Kagawa, Y., Racker, E. 1971. Partial resolution of the enzymes catalysing oxidative phosphorylation. XXV. Reconstitution of vesicles catalysing32Pi-adenosine triphosphate exchange.J. Biol. Chem. 246:5477–5487

    Google Scholar 

  • Le Cam, A., Freychet, P. 1977. Neutral amino acid transport. Characterisation of the A and L systems in isolated rat hepatocytes.J. Biol. Chem. 252:148–156

    Google Scholar 

  • Lowry, O.H., Roseborough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the folin reagent.J. Biol. Chem. 193:265–275

    Google Scholar 

  • Mayer, M.M. 1972. Mechanism of cytolysis by complement.Proc. Natl. Acad. Sci. USA 69:2954–2959

    Google Scholar 

  • Mellanby, J., Green, J. 1981. How does tetanus toxin act?Neuroscience 6:281–300

    Google Scholar 

  • Menestrina, G. 1986. Ionic channels formed byStaphylococcus aureus alpha-toxin: Voltage-dependent inhibition by divalent and trivalent cations.J. Membrane Biol. 90:177–190

    Google Scholar 

  • Menestrina, G., Bashford, C.L., Pasternak, C.A. 1990. Poreforming toxins: Experiments withStaphylococcus aureus α toxin,Clostridium perfringens θ toxin andEscherichia coli haemolysin in lipid bilayers, liposomes and intact cells.Toxicon (in press)

  • Misler, S. 1983. Gating of ion channels made by a diphtheria toxin fragment in phospholipid bilayer membranes.Proc. Natl. Acad. Sci. USA 80:4320–4324

    Google Scholar 

  • Muller-Eberhard, H.J. 1984. The membrane attack complex.Springer Semin. Immunopathol. 7:93–141

    Google Scholar 

  • Olsnes, S., Sandvig, K. 1983. Entry of toxic proteins into cells.In: Receptor-mediated Endocytosis. P. Cuatrecasas and T.F. Roth, editors. Chapman and Hall, London

    Google Scholar 

  • Olsnes, S., Sandvig, K. 1986. Interactions between diphtheria toxin entry and anion transport in Vero cells.J. Biol. Chem. 261:1553–1561

    Google Scholar 

  • Papini, E., Sandona, D., Rappuoli, R., Montecucco, C. 1988. On the membrane translocation of diphtheria toxin: At low pH the toxin induces ion channels on cells.EMBO J. 7:3353–3359

    Google Scholar 

  • Pappenheiner, A.M., Jr. 1977. Diphtheria toxin.Annu. Rev. Biochem. 46:69–94

    Google Scholar 

  • Pasternak, C.A., Micklem, K.J. 1973. Permeability changes during cell fusion.J. Membrane Biol. 14:293–303

    Google Scholar 

  • Pasternak, C.A., Whitaker-Dowling, P.A., Widnell, C.C. 1988. Stress-induced increase of hexose transport as a novel index of cytopathic effects in virus-infected cells: Role of thel protein in the action of vesicular stomatitis virus.Virology 166:379–386

    Google Scholar 

  • Sandvig, K., Olsnes, S. 1980. Diphtheria toxin entry into cells is facilitated by low pH.J. Cell Biol. 87:828–832

    Google Scholar 

  • Sandvig, K., Olsnes, S. 1988. Diphtheria toxin-induced channels in Vero cells selective for monovalent cations.J. Biol. Chem. 263:12352–12359

    Google Scholar 

  • Sims, P.J., Lauf, P.K. 1978. Steady-state analysis of tracer exchange across the C5b-9 complement lesion in a biological membrane.Proc. Natl. Acad. Sci. USA 75:5669–5673

    Google Scholar 

  • Sims, P.J., Lauf, P.K. 1980. Analysis of solute diffusion across the C5b-9 membrane lesion of complement: Evidence that individual C5b-9 complexes do not function as discrete, uniform pores.J. Immunol. 125:2617–2625

    Google Scholar 

  • Sugiyama, H. 1980.Clostridium botulinum neurotoxin.Microbiol. Rev. 44:419–448

    Google Scholar 

  • Thelestam, M., Mollby, R. 1979. Classification of microbial, plant and animal cytolysins based on their membrane-damaging effects on human fibroblasts.Biochim. Biophys. Acta. 557:156–169

    Google Scholar 

  • Thelestam, M., Mollby, R. 1980. Interaction of streptolysin O fromStreptococcus pyogenes and theta-toxin fromClostridium perfringens with human fibroblasts.Infect. Immun. 29:863–872

    Google Scholar 

  • Van Heyningen, S. 1980. Tetanus toxin.Pharmacol. Ther. 11:141–157

    Google Scholar 

  • Wohlheuter, R.M., Plagemann, P.G.W. 1980. The role of transport and phosphorylation in nutrient uptake in cultured animal cells.Int. Rev. Cytol. 64:171–240

    Google Scholar 

  • Yamaizumi, M., Mekada, E., Uchida, T. 1978. One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell.Cell 15:245–250

    Google Scholar 

  • Young, J.D., Cohn, Z.A., Podack, E.R. 1986. The ninth component of complement and the pore-forming protein (perforin 1) from cytotoxic T cells: Structural, immunological and functional similarities.Science 233:184–190

    Google Scholar 

  • Zalman, L.S., Wisnieski, B.J. 1984. Mechanism of insertion of diphtheria toxin: Peptide entry and pore size determinations.Proc. Natl. Acad. Sci. USA 81:3341–3345

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alder, G.M., Bashford, C.L. & Pasternak, C.A. Action of diphtheria toxin does not depend on the induction of large, stable pores across biological membranes. J. Membrain Biol. 113, 67–74 (1990). https://doi.org/10.1007/BF01869607

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869607

Key Words

Navigation