Skip to main content
Log in

Electrogenic and electroneutral transport modes of renal Na/K ATPase reconstituted into proteoliposomes

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

This paper describes measurements of electrical potentials generated by renal Na/K-ATPase reconstituted into proteoliposomes, utilizing the anionic dye, oxonol VI. Calibration of absorption changes with imposed diffusion potentials allows estimation of absolute values of electrogenic potentials.

ATP-dependent Nacyt/Kexc exchange in K-loaded vesicles generates large potentials, up to 250 mV. By comparing initial rates or steady-state potentials with ATP-dependent22Na fluxes in different conditions, it is possible to infer whether coupling ratios are constant or variable. For concentrations of Nacyt (2–50mm) and ATP (1–1000 μm) and pH's (6.5–8.5), the classical 3Nacyt/2Kexc coupling ratio is maintained. However, at low Nacyt concentrations (<0.8mm), the coupling ratio is apparently less than 3Nacyt/2Kexc.

ATP-dependent Nacyt/congenerexc exchange in vesicles loaded with Rb, Cs, Li and Na is electrogenic. In this mode congeners, including Naexc, act as Kexc surrogates in an electrogenic 3Nacyt/2congenerexc exchange. (ATP+Pi)-dependent Kcyt/Kexc exchange in K-loaded vesicles is electroneutral.

ATP-dependent “uncoupled” Na flux into Na- and K-free vesicles is electroneutral at pH 6.5–7.0 but becomes progressively electrogenic as the pH is raised to 8.5. The22Na flux shows no anion specificity. We propose that “uncoupled” Na flux is an electroneutral 3Nacyt/3Hexc exchange at pH 6.5–7.0 but at higher pH's the coupling ratio changes progressively, reaching 3Na/no ions at pH 8.5. Slow passive pump-mediated net K uptake into Na- and K-free vesicles is electroneutral, and may also involve Kcyt/Hexc exchange.

We propose the general hypothesis that coupling ratios are fixed when cation transport sites are saturated, but at low concentrations of transported cations, e.g., Nacyt in Na/K exchange and Hexc in “uncoupled” Na flux, coupling ratios may change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Admon, A., Shahak, Y., Avron, M. 1982. Adenosine triphosphate-generated transmembrane electrical potential in chloroplasts.Biochim. Biophys. Acta 681:405–411

    Google Scholar 

  • Apell, H.-J., Bersch, B. 1987. Oxonol VI as an optical indicator for membrane potentials in lipid vesicles.Biochim. Biophys. Acta 903:480–494

    Google Scholar 

  • Bashford, C.L., Chance, B., Smith, J.C., Yoshida, T. 1979. The behaviour of oxonol dyes in phospholipid dispersions.Biophys. J. 25:63–85

    Google Scholar 

  • Bashford, C.L., Smith, J.C. 1978. The use of optical probes to monitor membrane potential.Methods Enzymol. 55:569–586

    Google Scholar 

  • Blostein, R. 1983a. The influence of cytoplasmic sodium concentration on the stoichiometry of the sodium pump.J. Biol. Chem. 258:12228–12232

    Google Scholar 

  • Blostein, R. 1983b. Sodium pump-catalysed sodium-sodium exchange associated with ATP hydrolysis.J. Biol. Chem. 258:7948–7953

    Google Scholar 

  • Borlinghaus, R., Apell, H.-J., Läuger, P. 1987. Fast charge translocations associated with partial reactions of the Na/K-pump. I. Current and voltage transients after photochemical release of ATP.J. Membrane Biol. 97:161–178

    Google Scholar 

  • Boyer, P.D. 1988. Bioenergetic coupling to protonmotive force: Should we be considering hydronium ion coordination and not group protonation?Trends Biochem. Sci. 12:5–7

    Google Scholar 

  • Brahm, J. 1977. Temperature-dependent changes of chloride transport kinetics in human red cells.J. Gen. Physiol. 70:283–306

    Google Scholar 

  • Cabantchik, Z. I., Knauf, P. A., Rothstein, A. 1978. The anion transport system of the red blood cell. The role of the membrane protein evaluated by the use of probes.J. Membrane Biol. 15:239–302

    Google Scholar 

  • Cornelius, F., Skou, J.C. 1985. Na+−Na+ exchange mediated by (Na++K+)-ATPase reconstituted into liposomes. Evaluation of pump stoichiometry and response to ATP and ADP.Biochim. Biophys. Acta. 818:211–221

    Google Scholar 

  • De Weer, P., Gadsby, D.C., Rakowski, R.F. 1988. Stoichiometry and voltage dependence of the sodium pump.In: The Na/K-Pump. J.C. Skou, J.G. Norby, A.B. Maunsbach, and M. Esmann, editors. Part A, pp. 421–434. A. R. Liss, New York

    Google Scholar 

  • De Weer, P., Rakowski, R.F., Gadsby, D.C. 1987. Current-voltage relationships for the electrogenic sodium pump of squid axon.Biophys. J. 51:385a

    Google Scholar 

  • Dissing, S., Hoffman, J.F. 1983. Anion-coupled Na efflux mediated by the Na/K pump in human red cells.Curr. Top. Membr. Transp. 19:693–695

    Google Scholar 

  • Dixon, J.F., Hokin, L.E. 1980. The reconstituted (Na,K)-ATPase is electrogenic.J. Biol. Chem. 255:10681–10686

    Google Scholar 

  • Eisner, D.A., Lederer, W.J. 1980. Characterisation of the electrogenic sodium pump in cardiac Purkinje fibres.J. Physiol. (London) 303:441–474

    Google Scholar 

  • Eisner, D.A., Valdeolmillos, M., Wray, S. 1987. The effects of membrane potential on active and passive Na transport inXenopus oocytes.J. Physiol. (London) 385:643–659

    Google Scholar 

  • Erdmann, E., Hasse, W. 1975. Quantitative aspects of ouabain binding to human erythrocytes and cardiac membranes.J. Physiol. (London) 251:671–683

    Google Scholar 

  • Fendler, K., Grell, E., Haubs, M., Bamberg, E. 1985. Pump currents generated by the purified Na+, K+-ATPase from kidney on black lipid membranes.EMBO J.4:3079–3085

    Google Scholar 

  • Forbush, B., III. 1987. Rapid release of42K and86Rb from an occluded state of the Na,K-Pump in the presence of ATP or ADP.J. Biol. Chem. 262:11104–11115

    Google Scholar 

  • Forgac, M., Chin, G. 1982. Na transport by the (Na+)-stimulated adenosine triphosphatase.J. Biol. Chem. 257:5652–5655

    Google Scholar 

  • Gadsby, D.C. 1984. The Na/K-pump of cardiac cells.Annu. Rev. Biophys. Bioeng. 13:373–398

    Google Scholar 

  • Garrahan, P.J., Glynn, I.M. 1967a. The sensitivity of the sodium pump to external sodium.J. Physiol. (London) 192:175–188

    Google Scholar 

  • Garrahan, P.J., Glynn, I.M. 1967b. The stoichiometry of the sodium pump.J. Physiol. (London) 192:217–235

    Google Scholar 

  • Glynn, I.M. 1984. The electrogenic sodium pump.In: Electrogenic Transport. Fundamental Principles and Physiological Implications. M.P. Blaustein and M. Liberman, editors. Vol. 38, pp. 33–48. Society of General Physiologists Series

  • Glynn, I.M., Hoffman, J.F. 1971. Nucleotide requirements for sodium-sodium exchange catalyzed by the sodium pump in human red cells.J. Physiol. (London) 218:239–256

    Google Scholar 

  • Glynn, I.M., Karlish, S.J.D. 1976. ATP hydrolysis associated with an uncoupled sodium flux through the sodium pump: Evidence for allosteric effects of intracellular ATP and extracellular sodium.J. Physiol. (London) 256:456–496

    Google Scholar 

  • Goldshleger, R., Karlish, S.J.D., Rephaeli, A., Stein, W.D., 1987a. The effect of membrane potential on the mammalian sodium-potassium pump reconstituted into phospholipid vesicles.J. Physiol. (London) 387:331–355

    Google Scholar 

  • Goldshleger, R., Karlish, S.J.D., Shahak, Y. 1987b. Electrogenic and electroneutral transport modes of the mammalian renal Na/K-pump.J. Physiol. (London) 390:98P

    Google Scholar 

  • Hara, Y., Nakao, M. 1986. ATP-dependent proton uptake by proteoliposomes reconstituted with purified Na/K-ATPase.J. Biol. Chem. 261:12655–12658

    Google Scholar 

  • Hoffman, J.H., Kaplan, J.H., Callahan, T.J. 1979. The Na∶K pump in red cells is electrogenic.Fed. Proc. 38:2440–2441

    Google Scholar 

  • Jorgensen, P.L. 1974. Purification and characterization of (Na++K+) ATPase. III. Purification from the outer medulla of mammalian kidney after selective removal of membrane components by sodium dodecylsulphate.Biochim. Biophys. Acta. 356:53–67

    Google Scholar 

  • Karlish, S.J.D. 1988a. Charge transfer by the Na/K-pump.In: The Na/K-Pump. J.C. Skou, J.G. Norby, A.B. Maunsbach, and M. Esmann, editors. Part A, pp. 519–524. A. R. Liss, New York

    Google Scholar 

  • Karlish, S.J.D. 1988b. Measurement of active and passive Na+ and K+ fluxes in reconstituted vesicles.Methods Enzymol. 156:179–188

    Google Scholar 

  • Karlish, S.J.D., Lieb, W.R., Stein, W.D. 1982. Combined effects of ATP and phosphate on rubidium exchange mediated by Na−K-ATPase reconstituted into phospholipid vesicles.J. Physiol. (London) 328:333–350

    Google Scholar 

  • Karlish, S.J.D., Pick, U. 1981. Sidedness of the effects of sodium and potassium ions on the conformational state of the sodium-potassium pump.J. Physiol. (London) 312:505–529

    Google Scholar 

  • Karlish, S.J.D., Stein, W.D. 1982a. Effects of ATP or phosphate on passive rubidium fluxes mediated by Na−K-ATPase reconstituted into phospholipid vesicles.J. Physiol. (London) 328:317–331

    Google Scholar 

  • Karlish, S.J.D., Stein, W.D. 1982b. Passive rubidium fluxes mediated by Na−K-ATPase reconstituted into phospholipid vesicles when ATP- and phosphate-free.J. Physiol. (London) 328:295–316

    Google Scholar 

  • Karlish, S.J.D., Stein, W.D. 1985. Cation activation of the pig kidney sodium pump: Transmembrane allosteric effects.J. Physiol. (London) 359:119–149

    Google Scholar 

  • Navarro, J., Essig, A. 1984. Voltage-dependence of Ca2+ uptake and ATP hydrolysis of reconstituted Ca-ATPase vesicles.Biophys. J. 46:709–717

    Google Scholar 

  • Penefsky, H.S. 1977. Reversible binding of Pi by beef heart mitochondria adenosine triphosphatase.J. Biol. Chem. 252:2891–2899

    Google Scholar 

  • Polvani, C., Blostein, R. 1988. Protons as substitutes for sodium and potassium in the sodium pump reaction.J. Biol. Chem. 263:16757–16763

    Google Scholar 

  • Polvani, C., Blostein, R. 1989. Effect of cytoplasmic sodium concentration on the electrogenicity of the sodium pump.J. Biol. Chem. 264:15182–15185

    Google Scholar 

  • Post, R.L., Jolly, P.C. 1957. The linkage of sodium, potassium and ammonium active transport across the human erythrocyte membrane.Biochim. Biophys. Acta. 25:118–128

    Google Scholar 

  • Schuurmans, J.J., Casey, R.P., Kraayenhof, R. 1978. Transmembrane electrical potential formation in spinach chloroplasts: Investigation using a rapidly-responding extrinsic probe.FEBS Lett 94:405–409

    Google Scholar 

  • Shahak, Y., Admon, A., AVron, M. 1982. Transmembrane electrical potential formation in chloroplast (CF1−CF0) proteoliposomes.FEBS Lett. 150:27–31

    Google Scholar 

  • Shani, M., Goldshleger, R., Karlish, S.J.D. 1987. Rb occlusion in renal (Na,K)ATPase characterised with a simple manual assay.Biochim. Biophys. Acta. 904:13–21

    Google Scholar 

  • Shani-Sekkler, M., Goldshleger, R., Tal, D., Karlish, S.J.D. 1988. Inactivation of Rb+ and Na+ occlusion on (Na+, K+)-ATPase by modification of carboxyl groups.J. Biol. Chem. 263:19331–19342

    Google Scholar 

  • Shanzer, A., Samuel, D., Korenstein, R. 1983. Lipophilic lithium ion carriers.J. Am. Chem. Soc. 105:3815–3818

    Google Scholar 

  • Smith, J.C., Chance, B. 1979. Kinetics of the potential-sensitive extrinsic probe oxonol VI in beef heart sub-mitochondrial particles.J. Membrane Biol 46:255–282

    Google Scholar 

  • Thomas, R.C. 1972. Electrogenic sodium pump in nerve and muscle cells.Physiol. Rev. 52:563–594

    Google Scholar 

  • Thomas, R.C. 1984. Electrogenic sodium pump current associated with recovery from intracellular acidification of snail neurones.In: Electrogenic Transport. Fundamental Principles and Physiological Implications. M.P. Blaustein, and M. Lieberman, editors. Vol. 38, pp. 3–16. Society of General Physiologists Series

  • Waggoner, A.S. 1985. Dye probes of cell, organelle and vesicle membrane potentials.In: The Enzymes of Biological Membranes. A.N. Martonosi, editor. Vol. 3, pp. 313–331. Plenum Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldshleger, R., Shahak, Y. & Karlish, S.J.D. Electrogenic and electroneutral transport modes of renal Na/K ATPase reconstituted into proteoliposomes. J. Membrain Biol. 113, 139–154 (1990). https://doi.org/10.1007/BF01872888

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872888

Key Words

Navigation