Skip to main content
Log in

Morphology of the intermediate stages in the lamellar to hexagonal lipid phase transition

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The addition of calcium to suspensions of egg phosphatidylcholine and cardiolipin converts multiwalled liposomes to the hexagonal (HII) phase (Rand, R.P., Sengupta, S. (1972)Biochim. Biophys. Acta 255:484–492). We have studied this lamellar to hexagonal phase transition by freeze-fracture, thin-section electron microscopy, and X-ray diffraction and have morphologically characterized the intermediate stages. The first step in the transition involves the invagination and fusion of bilayers, marked by the appearance of lipidic intramembrane particles and “crater-like” indentations, as the large liposomes are converted to smaller flattened and elongated vesicles. The next step is the formation of tightly packed hexagonal arrays of tubules, each tubule being about 11 to 15 nm in diameter. These tubules are filled with fluid and a lipid bilayer forms the wall of each cylinder. Finally this tubular bilayer phase is converted to the hexagonal (HII) phase, where the distance between tubes is 5.5 to 7.5 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Borovjagin, V.L., Vasilenko, I.A. 1981.31P-NMR and freeze-fracture electron microscopy studies of model lipid membranes in relation to lipidic intramembrane particles.Anat. Rec. 19313:32A

    Google Scholar 

  • Buchheim, W., Drenckhahn, D., Lullmann-Rauch, R. 1979. Freeze-fracture studies of cytoplasmic inclusions occurring in experimental lipidosis as induced by amphiphilic cationic drugs.Biochim. Biophys. Acta 575:71–80

    PubMed  Google Scholar 

  • Burnell, E., Van Alphen, L., Verjleij, A., DeKruijff, B. 1980.31P nuclear magnetic resonance and freeze-fracture electron microscopy studies onEscherichia coli. I. Cytoplasmic membrane and total phospholipids.Biochim. Biophys. Acta 597:492–501

    PubMed  Google Scholar 

  • Corless, J.M., Costello, M.J. 1981. Paracrystalline inclusions associated with the disk membranes of frog retinal rod outer segments.Exp. Eye Res. 32:217–228

    PubMed  Google Scholar 

  • Costello, M.J. 1980. Ultra-rapid freezing of thin biological samples.Scanning Elec. Microsc. 2:361–370

    Google Scholar 

  • Costello, M.J., Corless, J.M. 1978. The direct measurement of temperature changes within freeze-fracture specimens during rapid quenching in liquid coolants.J. Microsc. 112:17–37

    PubMed  Google Scholar 

  • Cullis, P.R., Hope, M.J. 1978. Effects of fusogenic agent on membrane structure of erythrocyte ghosts and the mechanism of membrane fusion.Nature (London) 271:672–674

    Google Scholar 

  • Cullis, P.R., DeKruijff, B. 1979. Lipid polymorphism and the functional roles of lipids in biological membranes.Biochim. Biophys. Acta 559:399–420

    PubMed  Google Scholar 

  • Bullis, P.R., DeKruijff, B., Hope, M.J., Nayar, R., Rietweld, A., Verkleij, A.J. 1980. Structural properties of phospholipids in the rat liver inner mitochondrial membrane. A31P-NMR study.Biochim. Biophys. Acta 600:625–635

    PubMed  Google Scholar 

  • Deamer, D.W., Leonard, R., Tardieu, A., Branton, D. 1970. Lamellar and hexagonal lipid phases visualized by freeze-etching.Biochim. Biophys. Acta 219:47–69

    PubMed  Google Scholar 

  • DeGrip, W.J., Drenthe, E.H.S., Van Echteld, C.J.A., De-Kruijff, B., Verkleij, A.J. 1979. A possible role of rhodopsin in maintaining bilayer structure in the photoreceptor membrane.Biochim. Biophys. Acta 558:330–337

    PubMed  Google Scholar 

  • Gulik-Krzywicki, T., Rivas, E., Luzzati, V. 1967. Structure et polymorphisme des Lipides: Etude par diffraction des rayons X du systeme forme de lipides de mitochondries de Coeur de boeuf et d'eau.J. Mol. Biol. 27:303–322

    PubMed  Google Scholar 

  • Hui, S.W., Stewart, T.P., Boni, L.T., Yeagle, P.L. 1981. Membrane fusion through point defects in bilayers.Science 212:921–923

    PubMed  Google Scholar 

  • Hui, S.W., Stewart, R.P., Yeagle, P.L., Albert, A.D. 1981. Bilayer to non-bilayer transition in mixtures of phosphatidylethanolamine and phosphatidylcholine: Implications for membrane properties.Arch. Biochem. Biophys. 207:227–240

    PubMed  Google Scholar 

  • Junger, E., Reinauer, H. 1969. Liquid crystalline phases of hydrated phosphatidylethanolamine.Biochim. Biophys. Acta 183:304–308

    PubMed  Google Scholar 

  • Kalina, M., Pease, D.C. 1977. The preservation of ultrastructure in saturated phosphatidylcholines by tannic acid in model systems and type II pneumocytes.J. Cell Biol. 74:726–741

    PubMed  Google Scholar 

  • Luzzati, V., Husson, F. 1962. The structure of the liquid-crystalline phases of lipid-water systems.J. Cell. Biol. 12:207–218

    PubMed  Google Scholar 

  • McIntosh, T.J., Simon, S.A., MacDonald, R.C. 1980. The organization ofn-alkanes in lipid bilayers.Biochim. Biophys. Acta 597:445–463

    PubMed  Google Scholar 

  • Miller, R.G. 1980. Do “lipidic particles” represent intermembrane attachment sites?Nature (London) 287:166–167

    Google Scholar 

  • Rand, R.P., Reese, T.S., Miller, R.G. 1981. Phospholipid bilayer deformations associated with interbilayer contact and fusion.Nature (London) 293:237–238

    Google Scholar 

  • Rand, R.P., Sengupta, S. 1972. Cardiolipid forms hexagonal structures with divalent cations.Biochim. Biophys. Acta 255:484–492

    PubMed  Google Scholar 

  • Stoeckenius, W. 1962. Some electron microscopical observations on liquid-crystalline phases in lipid water systems.J. Cell Biol. 12:221–229

    PubMed  Google Scholar 

  • Tardieu, A., Luzzati, V., Reman, F.C. 1973. Structure and polymorphism of the hydrocarbon chains of lipids: A study of lecithin-water phases.J. Mol. Biol. 75:711–733

    PubMed  Google Scholar 

  • Van Venetie, R., Verkleij, A.J. 1981. Analysis of the hexagonal HII phase and its relations to lipidic particles and the lamellar phase. A freeze-fracture study.Biochim. Biophys. Acta 645:262–269

    PubMed  Google Scholar 

  • Verkleij, A.J., Mombers, C., Gerritsen, W.J., Leunissen-Bijvelt, L., Cullis, P.R. 1979. Fusion of phospholipid vesicles in association with the appearance of lipidic particles as visualized by freeze fracturing.Biochim. Biophys. Acta 555:358–361

    PubMed  Google Scholar 

  • Verkleij, A.J., Van Echteld, C.J.A., Gerritsen, W.J., Cullis, P.R., DeKruijff, B. 1980. The lipidic particle as an intermediate structure in membrane fusion processes and bilayer to hexagonal HII transitions.Biochim. Biophys. Acta 600:620–624

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borovjagin, V.L., Vergara, J.A. & McIntosh, T.J. Morphology of the intermediate stages in the lamellar to hexagonal lipid phase transition. J. Membrain Biol. 69, 199–212 (1982). https://doi.org/10.1007/BF01870399

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870399

Key Words

Navigation