Skip to main content
Log in

Effect of bicarbonate, pH, methazolamide and stibenes on the intracellular potentials of cultured bovine corneal endothelial cells

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Micropuncture of cultured bovine corneal endothelial cells led to registrations stable for hours. Intracellular potentials were mainly in the range of −40 to −55 mV, average 46.3±0.6 mV (sem). Changes of extracellular [HCO 3 ] led to voltage transients, their amplitude depending logarithmically on [HCO 3 ] with a mean slope of 37.3±8.8 (sd) mV. After removal of bicarbonate/CO2, a steady-state depolarization was seen. This steady-state depolarization, but not the voltage transients, could be reduced by 1mm Ba++. After removal of bicarbonate, the voltage response to changes of extracellular potassium was reduced. Alteration of pH i induced by permeable buffers (butyrate, glycodiazine and ammonium) also resulted in voltage transients, internal acidification being correlated with a hyperpolarization, and internal alkalinization with a depolarization. Also changes of external pH caused voltage responses, alkalinization causing a hyperpolarization, acidification a depolarization. Methazolamide, an inhibitor of carbonic anhydrase, as well as stilbenes (SITS or DIDS) caused a reduction of the voltage response to HCO 3 and pH. Their effects were additive. It is suggested that corneal endothelial cells possess one or two electrogenic transporters for HCO 3 or related species, one of which is inhibitable by stilbenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aickin, C.C., Thomas, R.C., 1976. Micro-electrode measurement of the intracellular pH and buffering capacity of mouse soleus muscle.J. Physiol. (London).267: 791–810

    Google Scholar 

  2. Biagi, B., Kubota, T., Sohtell, M., Giebisch, G. 1981. Intracellular potentials in rabbit proximal tubule perfusedin vitro.Am. J. Physiol. 240: F200-F210

    Google Scholar 

  3. Boron, W.F., Boulpaep, E.L. 1983. Intracellular pH regulation in the renal proximal tubule of the salamander. Na−H exchange.J. Gen. Physiol. 81:29–52

    Google Scholar 

  4. Boron, W.F., Boulpaep, E.L. 1983. Intracellular pH regulation in the renal proximal tubule of the salamander. Basolateral HCO 3 -transport.J. Gen. Physiol. 81: 53–94

    Google Scholar 

  5. Boron, W.F., De Weer, P. 1976. Intracellular pH transients in squid giant axons caused by CO2, NH3, and metabolic inhibitors.J. Gen. Physiol. 67: 91–112

    Google Scholar 

  6. Fischbarg, J., Lim, J.J. 1974. Role of cations, anions and carbonic anhydrase in fluid transport across rabbit corneal endothelium.J. Physiol. (London) 241: 647–675

    Google Scholar 

  7. Fischer, F., Voigt, G., Liegl, O., Wiederholt, M. 1974. Effect of pH on potential difference and short circuit current in the isolated human cornea.Pfluegers Arch 349: 119–131

    Google Scholar 

  8. Frömter, E., Sato, K., Gessner, K. 1976. Electrical Studies on the Mechanism of H+/HCO 3 Transport across Rat Kidney Proximal Tubule.Proc. 6th Int. Congr. Nephrol, Florence, 1975, pp. 108–112. Karger, Basel

    Google Scholar 

  9. Gospodarowicz, D., Greenburg, G., Birdwell, C.R. 1978. Determination of cellular shape by the extracellular matrix and its correlation with the control of cellular growth.Cancer Res. 38: 4155–4171

    Google Scholar 

  10. Gospodarowicz, D., Mescher, A.L., Birdwell, C.R. 1977. Stimulation of corneal endothelial cell proliferationin vitro by fibroblast and epidermal growth factors.Exp. Eye Res. 25: 75–89

    Google Scholar 

  11. Gospodarowicz, D., Vlodavsky, I., Savion, N. 1981. The role of fibroblast growth factor and the extracellular matrix in the control of proliferation and differentiation of corneal endothelial cells.Vision Res. 21: 87–103

    Google Scholar 

  12. Green, K., Simon, S., Kelly, G.M., Bowman, K.A. 1981. Effects of Na+, Cl, carbonic anhydrase, and intracellular pH on corneal endothelial bicarbonate transport.Invest. Ophthalmol. Vis. Sci. 21:586–591

    Google Scholar 

  13. Gutknecht, J., Bisson, M.A., Tosteson, F.C. 1977. Diffusion of carbon dioxide through lipid bilayer membranes.J. Gen. Physiol. 69:779–794

    Google Scholar 

  14. Hodson, S. 1974. The regulation of corneal hydration by a salt pump requiring the presence of sodium and bicarbonate ions.J. Physiol. (London) 236:271–302

    Google Scholar 

  15. Hodson, S., Miller, F. 1976. The bicarbonate ion pump in the endothelium which regulates the hydration of rabbit cornea.J. Physiol. (London) 263:563–577

    Google Scholar 

  16. Hodson, S., Wigham, C., Williams, L., Mayes, K.R., Graham, M.V. 1981. Observations on the human corneain vitro.Exp. Eye Res. 32:353–360

    Google Scholar 

  17. Huff, J.W., Green, K. 1981. Demonstration of active sodium transport across the isolated rabbit corneal endothelium.Curr. Eye Res. 1: 113–114

    Google Scholar 

  18. Huff, J.W., Green, K. 1982. Ion transport systems in the isolated rabbit corneal endothelium.Invest. Ophthalmol. Vis. Sci. 22 (Suppl.):101 (Abstr.)

    Google Scholar 

  19. Hull, D.S., Green, K., Boyd, M., Wynn, H.R. 1977. Corneal endothelium bicarbonate transport and the effect of carbonic anhydrase inhibitors on endothelial permeability and fluxes and corneal thickness.Invest. Ophthalmol. Vis. Sci. 16:883–892

    Google Scholar 

  20. Jennings, M.L. 1976. Proton fluxes associated with erythrocyte membrane anion exchange.J. Membrane Biol. 28:187–205

    Google Scholar 

  21. Jentsch, T.J., Koch, M., Bleckmann, H., Wiederholt, M. 1983. The effect of bicarbonate on the intracellular potential of cultured bovine corneal endothelial cells.Naunyn-Schmiedeberg's Arch. Pharmacol. 322:R10 (Abstr.)

    Google Scholar 

  22. Jumblatt, M.M. 1981. Intracellular potentials of cultured rabbit corneal endothelial cells: Response to temperature and ouabain.Vision Res. 21:45–47

    Google Scholar 

  23. Kelly, G., Green, K. 1980. Influence of bicarbonate and CO2 on rabbit corneal transendothelial bicarbonate fluxes.Exp. Eye Res. 30:641–648

    Google Scholar 

  24. Kim, J.H., Green, K., Martinez, M., Paton, D. 1971. Solute permeability of the corneal endothelium and descement's membrane.Exp. Eye Res. 12:231–238

    Google Scholar 

  25. Liebovitch, L.S., Fischbarg, J. 1982. Effects of inhibitors of passive Na+ and HCO 3 fluxes on electrical potential and fluid transport across rabbit corneal endothelium.Curr. Eye Res. 2:183–186

    Google Scholar 

  26. Lim, J.J. 1981. Na+ transport across the rabbit corneal endothelium.Curr. Eye Res. 1:255–258

    Google Scholar 

  27. Lim, J.J. 1982. Ion transport across the rabbit corneal endothelium.Invest. Ophthalmol. Vis. Sci. 22 (Suppl.):101 (Abstr.)

    Google Scholar 

  28. Lim, J.J., Fischbarg, J. 1979. Intra-cellular potential of rabbit corneal endothelial cells.Exp. Eye Res. 28:619–626

    Google Scholar 

  29. Lim, J.J., Fischbarg, J. 1981. Electrical properties of rabbit corneal endothelium as determined from impedance measurements.Biophys. J. 36:677–695

    Google Scholar 

  30. Lim, J.J., Ussing, H.H. 1982. Analysis of presteady-state Na+ fluxes across the rabbit corneal endothelium.J. Membrane Biol. 65:197–204

    Google Scholar 

  31. MacCallum, D.K., Lillie, J.H., Scaletta, L.J., Occhino, J.C., Frederick, W.G., Ledbetter, S.R., 1982. Bovine corneal endotheliumin vitro.Exp. Cell Res. 139:1–13

    Google Scholar 

  32. Riley, M.V. 1977. Anion-sensitive ATPase in rabbit corneal endothelium and its relation to corneal hydration.Exp. Eye Res. 25:483–494

    Google Scholar 

  33. Riley, M.V., Peters, M.I. 1981. The localization of the anion-sensitive ATPase activity in corneal endothelium.Biochim. Biophys. Acta 644:251–256

    Google Scholar 

  34. Roos, A., Boron, W.F. 1981. Intracellular pH.Physiol. Rev. 61:296–434

    Google Scholar 

  35. Schultz, I. 1971. Influence of bicarbonate-CO2 and glycodiazine buffer on the secretion of the isolated cat pancreas.Pfluegers Arch. 329:283–306

    Google Scholar 

  36. Steels, P.S., Boulpaep, E.L. 1976. Effect of pH on ionic conductances at the proximal tubule epithelium ofNecturus and the role of buffer permeability.Fed. Proc. 35:465 (Abstr.)

    Google Scholar 

  37. Thomas, R.C. 1976. The effect of carbon dioxide on the intracellular pH and buffering power of snail neurones.J. Physiol. (London) 255:715–735

    Google Scholar 

  38. Ullrich, K.J., Radtke, H.W., Rumrich, G., Klöss, S. 1971. The role of bicarbonate and other buffers on isotonic fluid absorption in the proximal convolution of the rat kidney.Pfluegers Arch. 330:149–161

    Google Scholar 

  39. Whikehart, D.R., Soppet, D.R. 1981. Activities of transport enzymes located in the plasma membranes of corneal endothelial cells.Invest. Ophthalmol. Vis. Sci. 21:819–825

    Google Scholar 

  40. Wiederholt, M., Koch, M. 1978. Intracellular potentials of isolated rabbit and human corneal endothelium.Exp. Eye Res. 27:511–518

    Google Scholar 

  41. Wigham, C., Hodson, S. 1981. The effect of bicarbonate ion concentration on trans-endothelial short circuit current in ox corneas.Curr. Eye Res. 1:37–41

    Google Scholar 

  42. Wigham, C., Hodson, S. 1981. Bicarbonate and the transendothelial short circuit current of the human cornea.Curr. Eye Res. 1:285–290

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jentsch, T.J., Koch, M., Bleckmann, H. et al. Effect of bicarbonate, pH, methazolamide and stibenes on the intracellular potentials of cultured bovine corneal endothelial cells. J. Membrain Biol. 78, 103–117 (1984). https://doi.org/10.1007/BF01869198

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869198

Key Words

Navigation