Skip to main content
Log in

Cation selectivity of the resting membrane of squid axon

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Permeability constant ratios among monovalent cations were studied in the resting membrane of a giant axon of a Pacific squid,Loligo opalescens, by observing the relationship between the membrane potential and the ion concentration.

The average permeability ratios are: Tl, 1.8; K, 1.0; Rb, 0.72; Cs, 0.16; Na, <0.08; Li, <0.08. These permeability ratios suggest that neither valinomycin nor nonactin are adequate models for the sites producing the resting permeability in the axonal membrane.

Cyclic polyetherbis(t-butyl cyclohexyl) 18-crown-6 does not increase the permeability ratioP Cs/P K except when applied at concentrations (5×10−5 m) at which the surfactant properties of this molecule may become significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelman, W. J., Jr., Fok, Y. B. 1964. Internally perfused squid axons studied under voltage clamp conditions. II. Results. The effects of internal potassium and sodium on membrane electrical characteristics.J. Cell. Comp. Physiol. 64:429.

    Google Scholar 

  • Baker, P. F., Hodgkin, A. L., Meves, H. 1964. The effect of diluting the internal solution on the electrical properties of a perfused giant axon.J. Physiol. 170:541.

    PubMed  Google Scholar 

  • Baker, P. F., Hodgkin, A. L., Shaw, T. I. 1962. The effects of changes in internal ionic concentrations on the electrical properties of perfused giant axons.J. Physiol. 164:355.

    PubMed  Google Scholar 

  • Binstock, L., Lecar, H. 1969. Ammonium ion conductances in the squid giant axon.J. Gen. Physiol. 53:342.

    PubMed  Google Scholar 

  • Ciani, S., Szabo, G., Eisenman, G. 1969. A neutral carrier model for membrane ion permeation and some expectations testable in unperfused cells.Biophys. J. 9:A81.

    Google Scholar 

  • Eisenman, G. 1963. The influence of Na, K, Li, Rb and Cs on cellular potentials and related phenomena.Bol. Inst. Estud. Med. Biol. (Mex.) 21:155.

    Google Scholar 

  • Eisenman, G. 1965. Some elementary factors involved in specific ion permeation.Proc. XXIII Inter. Congr. Physiol. Sci., Tokyo p. 489.

  • Eisenman, G., Ciani, S. M., Szabo, G. 1968. some theoretically expected and experimentally observed properties of lipid bilayer membranes containing neutral molecular carriers of ions.Fed. Proc. 27:1289.

    PubMed  Google Scholar 

  • Eisenman, G., Szabo, G., Ciani, S., McLaughlin, S. G. A., Krasne, S. 1972. Ion binding and ion transport produced by neutral lipid soluble molecules.In: Progress in Surface and Membrane Science. J. F. Danielli, editor. American Press. New York. (In press.)

    Google Scholar 

  • Eisenman, G., Szabo, G., McLaughlin, S. G. A., Ciani, S. M. 1972. Molecular basis for the action of macrocyclic antibiotics on membranes.In: Symposium on Molecular Mechanisms of Antibiotic Action on Protein Biosynthesis and Membranes. D. Vasquez, editor. Springer-Verlag. Berlin. (In press.)

    Google Scholar 

  • Finkelstein, A., Cass, A. 1968. Permeability and electrical properties of thin lipid membranes.J. Gen. Physiol. 27:37.

    Google Scholar 

  • Hagiwara, S., Toyama, K., Hayashi, H. 1971. Mechanisms of anion and cation permeations in the resting membrane of a barnacle muscle fiber.J. Gen. Physiol. 57:408.

    PubMed  Google Scholar 

  • Hille, B. 1972. Size of the selectivity filter in the K channel of frog nerve.Biophys. J. 12:123a.

    PubMed  Google Scholar 

  • Hodgkin, A. L., Horowicz, P. 1959. The influence of potassium and chloride ions on the membrane potential of single muscle fibers.J. Physiol. 148:127.

    PubMed  Google Scholar 

  • Hodgkin, A. L., Katz, B. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid.J. Physiol. 108:37.

    Google Scholar 

  • MacInnes, D. A. 1961. Principles of Electrochemistry. Dover Press, New York.

    Google Scholar 

  • Robinson, R. A., Stokes, R. H. 1959. Electrolyte Solutions. Butterworth. London.

    Google Scholar 

  • Sjodin, R. A. 1959. Rubidium and caesium fluxes in muscle as related to membrane potential.J. Gen. Physiol. 42:983.

    PubMed  Google Scholar 

  • Steinbach, H. B. 1941. Chloride in the giant axons of the squid.J. Cell. Comp. Physiol. 17:57.

    Google Scholar 

  • Stillman, I. M., Gilbert, D., Robbins, M. 1970. Monactin does not influence K+ permeability in the squid axonal membrane.Bioch. Biophys. Acta 203:338.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagiwara, S., Eaton, D.C., Stuart, A.E. et al. Cation selectivity of the resting membrane of squid axon. J. Membrain Biol. 9, 373–384 (1972). https://doi.org/10.1007/BF01868063

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868063

Keywords

Navigation