Skip to main content
Log in

Microscopic description of voltage effects on ion-driven cotransport systems

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

A microscopic model for the analysis of voltage effects on ion-driven cotransport systems is described. The model is based on the notion that the voltage dependence of a given rate constant is directly related to the amount of charge which is translocated in the corresponding reaction step. Charge translocation may result from the movement of an ion along the transport pathway, from the displacement of charged ligand groups of the ion-binding site, or from reorientation of polar residues of the protein in the course of a conformational transition. The voltage dependence of overall transport rate is described by a set of dimensionless coefficients reflecting the dielectric distances over which charge is displaced in the elementary reaction steps. The dielectric coefficients may be evaluated from the shape of the experimental flux-voltage curve if sufficient information on the rate constants of the reaction cycle is available. Examples of flux-voltage curves which are obtained by numerical simulation of the transport model are given for a number of limiting cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aronson, P.S. 1978. Energy-dependence of phlorizin binding to isolated renal microvillus membranes. Evidence concerning the mechanism of coupling between the electrochemical Na+ gradient and sugar transport.J. Membrane Biol. 42:81–98

    Google Scholar 

  • Aronson, P.S. 1984. Electrochemical driving forces for secondary active transport: Energetics and kinetics of Na+−H+ exchange and Na+-glucose cotransport.In: Electrogenic Transport: Fundamental Principles and Physiological Implications. M.P. Blaustein and M. Liberman, editors. Raven, New York

    Google Scholar 

  • Beck, J.C., Sacktor, B. 1975. Energetics of the Na+-dependent transport ofd-glucose in renal brush border membrane vesicles.J. Biol. Chem. 250:8674–8680

    PubMed  Google Scholar 

  • Beck, J.C., Sacktor, B. 1978. The sodium electrochemical potential-mediated uphill transport ofd-glucose in renal brush border membrane vesicles.J. Biol. Chem. 253:5531–5535

    PubMed  Google Scholar 

  • Bergman, C., Bergman, J. 1985. Origin and voltage dependence of asparagine-induced depolarization in intestinal cells ofXenopus embryo.J. Physiol. (London) 366:197–220

    Google Scholar 

  • Burckhardt, G., Kinne, R., Stange, G., Murer, H. 1980. The effects of potassium and membrane potential on sodium-dependent glutamic acid uptake.Biochim. Biophys. Acta 599:191–201

    PubMed  Google Scholar 

  • Carter-Su, C., Kimmich, G.A. 1980. Effects of membrane potential on Na-dependent sugar transport by ATP-depleted intestinal cells.Am. J. Physiol. 238:C73-C80

    PubMed  Google Scholar 

  • Crane, R.K., Dorando, F.C. 1982. The kinetics and mechanism of Na+-gradient-coupled glucose transport.In: Membranes and Transport. A.N. Martonosi, editor. Vol. 2, pp. 153–160. Plenum, New York

    Google Scholar 

  • Frömter, E. 1982. Electrophysiological analysis of rat renal sugar and amino acid transport. I. Basic phenomena.Pfluegers Arch. 393:179–189

    Article  Google Scholar 

  • Ganapathy, V., Leibach, F.H. 1983. Electrogenic transport of 5-oxoproline in rabbit renal brush-border membrane vesicles. Effect of intravesicular potassium.Biochim. Biophys. Acta 732:32–40

    PubMed  Google Scholar 

  • Garcia, M.L., Viitanen, P., Foster, D.L., Kaback, H.R. 1983. Mechanism of lactose translocation in proteoliposomes reconstituted with lac carrier protein purified fromEscherichia coli. I. Effect of pH and imposed membrane potential on efflux, exchange, and counterflow.Biochemistry 22:2524–2531

    Article  PubMed  Google Scholar 

  • Geck, P., Heinz, E. 1976. Coupling in secondary transport. Effect of electrical potentials on the kinetics of ion-linked cotransport.Biochim. Biophys. Acta 443:49–63

    PubMed  Google Scholar 

  • Gunter-Smith, P.J., Grasset, E., Schultz, S.G. 1982. Sodium-coupled amino acid and sugar transport byNecturus small intestine.J. Membrane Biol. 66:25–39

    Google Scholar 

  • Harrison, D.A., Rowe, G.W., Lumsden, C.F., Silverman, M. 1984. Computational analysis of models for cotransport.Biochim. Biophys. Acta 774:1–10

    PubMed  Google Scholar 

  • Hilden, H., Sacktor, B. 1982. Potential-dependentd-glucose uptake by renal brush border membrane vesicles in the absence of sodium.Am. J. Physiol. 242:F340-F345

    PubMed  Google Scholar 

  • Hol, W.G.J. 1985. The role of the α-helix dipole in protein function and structure.Prog. Biophys. Mol. Biol. 45:149–195

    Article  PubMed  Google Scholar 

  • Hopfer, U., Groseclose, R. 1980. The mechanism of Na+-dependentd-glucose transport.J. Biol. Chem. 255:4453–4462

    PubMed  Google Scholar 

  • Iwatsuki, N., Petersen, O.H. 1980. Amino acids evoke shortlatency membrane conductance increase in pancreatic acinar cells.Nature (London) 283:492–494

    Article  Google Scholar 

  • Jardetzky, O. 1966. Simple allosteric models for membrane pumps.Nature (London) 211:969–970

    Google Scholar 

  • Jauch, P., Maruyama, Y., Petersen, O.H., Kolb, H.A., Läuger, P. 1986. Electrophysiological study of the alanine-sodium cotransporter in pancreatic acinar cells.In: 25 Years of Research on the Brush Border Membrane and on Sodium-Coupled Transport. INSERM Symposium Series Vol. 26. F. Alvarado and C.H. van Os, editors. Elsevier, Amsterdam (in press)

    Google Scholar 

  • Johnson, K.J. 1980. Numerical Methods in Chemistry. Marcel Dekker, New York

    Google Scholar 

  • Johnstone, R.M. 1979. Electrogenic amino acid transport.Can. J. Physiol. Pharmacol. 57:1–15

    PubMed  Google Scholar 

  • Jung, D.W., Schwarz, W., Passow, H. 1984. Sodium-alanine contransport in oocytes ofXenopus laevis.J. Membrane Biol. 78:29–34

    Google Scholar 

  • Kaback, H.R. 1983. The lac carrier protein inEscherichia coli.J. Membrane Biol. 76:95–112

    Google Scholar 

  • Kaunitz, H.D., Wright, E.M. 1984. Kinetics of sodiumd-glucose cotransport in bovine intestinal brush border vesicles.J. Membrane Biol. 79:41–51

    Google Scholar 

  • Kessler, M., Semenza, G. 1983. The small-intestinal Na+,d-glucose cotransporter: An asymmetric gated channel (or pore) responsive to Δψ.J. Membrane Biol. 76:27–56

    Google Scholar 

  • Klingenberg, M., Riccio, P., Aquila, H., Buchanau, B.B., Grebe, K. 1976.In: The Structural Basis of Membrane Function. Y. Hatefi and L. Djavadi-Ohaniance, editors. pp. 293–311. Academic, New York

    Google Scholar 

  • Lafaire, A.V., Schwarz, W. 1985. Voltage-dependent ouabainsensitive current in the membrane of oocytes ofXenopus laevis.In: The Sodium Pump. I.M. Glynn and J.C. Ellory, editors. pp. 523–525. Company of Biologists, Cambridge, Great Britain

    Google Scholar 

  • Läuger, P. 1980. Kinetic properties of ion carriers and channels.J. Membrane Biol. 57:163–178

    Google Scholar 

  • Läuger, P. 1984. Thermodynamic and kinetic properties of electrogenic ion pumps.Biochim. Biophys. Acta 779:307–341

    PubMed  Google Scholar 

  • Marty, A., Neher, E. 1983. Tight-seal whole-cell recording.In: Single-channel recording. B. Sakmann and E. Neher, editors. pp. 107–122. Plenum, New York

    Google Scholar 

  • Mitchell, P. 1969. Chemiosmotic coupling and energy transduction.Theor. Exp. Biophys. 2:159–216

    Google Scholar 

  • Murer, H., Hopfer, U. 1974. Demonstration of electrogenic Na+-dependentd-glucose transport in intestinal brush border membranes.Proc. Natl. Acad. Sci. USA 71:484–488

    PubMed  Google Scholar 

  • Overath, P., Wright, J.K. 1983. Lactose permease: A carrier on the move.Trends Biochem. Sci. 8:404–408

    Article  Google Scholar 

  • Patlak, C.S. 1957. Contributions to the theory of active transport: II. The gate type noncarrier mechanism and generalizations concerning tracer flow, efficiency and measurements of energy expenditure.Bull. Math. Biophys. 19:209–235

    Google Scholar 

  • Restrepo, D., Kimmich, G.A. 1985a. The mechanistic nature of the membrane potential dependence of sodium-sugar cotransport in small intestine.J. Membrane Biol. 87:159–172

    Google Scholar 

  • Restrepo, D., Kimmich, G.A. 1985b. Kinetic analysis of the mechanism of intestinal Na+-dependent sugar transport.Am. J. Physiol. 248:C498-C509

    PubMed  Google Scholar 

  • Restrepo, D., Kimmich, G.A. 1986. Phlorizin binding to isolated enterocytes: Membrane potential and sodium dependence.J. Membrane Biol. 89:269–280

    Google Scholar 

  • Sanders, D., Hansen, U.-P., Gradmann, D., Slayman, C.L. 1984. Generalized kinetic analysis of ion-driven cotransport systems: A unified interpretation of selective ionic effects on Michaelis parameters.J. Membrane Biol. 77:123–152

    Google Scholar 

  • Schultz, S.G., Curran, P.F. 1970. Coupled transport of sodium and organic solutes.Physiol. Rev. 50:637–718

    PubMed  Google Scholar 

  • Semenza, G., Kessler, M., Hosang, M., Weber, J., Schmidt, U. 1984. Biochemistry of the Na+,d-glucose cotransporter of the small-intestinal brush-border membrane: The state of the art in 1984.Biochim. Biophys. Acta 779:343–379

    PubMed  Google Scholar 

  • Stevens, B.R., Kaunitz, J.D., Wright, E.M. 1984. Intestinal transport of amino acids and sugars: Advances using membrane vesicles.Annu. Rev. Physiol. 46:417–433

    Article  PubMed  Google Scholar 

  • Toggenburger, G., Kessler, M., Semenza, G. 1982. Phlorizin as a probe for the small intestinal Na+,d-glucose cotransporter. A model.Biochim. Biophys. Acta 688:557–571

    PubMed  Google Scholar 

  • Turner, R.J. 1981. Kinetic analysis of a family of cotransport systems.Biochim. Biophys. Acta 649:269–280

    PubMed  Google Scholar 

  • Turner, R.J. 1983. Quantitative studies of cotransport systems: Models and vesicles.J. Membrane Biol. 76:1–15

    Google Scholar 

  • Turner, R.J., Silverman, M. 1980. Testing carrier models of cotransport using the binding kinetics of non-transported competitive inhibitors.Biochim. Biophys. Acta 596:272–291

    PubMed  Google Scholar 

  • Turner, R.J., Silverman, M. 1981. Interaction of phlorizin and sodium with the renal brush-border membraned-glucose transporter: Stoichiometry and order of binding.J. Membrane Biol. 58:43–55

    Google Scholar 

  • Zwolinski, B.I., Eyring, H., Reese, C.E. 1949. Diffusion and membrane permeability.J. Phys. Chem. 53:1426–1453

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Läuger, P., Jauch, P. Microscopic description of voltage effects on ion-driven cotransport systems. J. Membrain Biol. 91, 275–284 (1986). https://doi.org/10.1007/BF01868820

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868820

Key Words

Navigation