Skip to main content
Log in

Cladistic analysis of 5S rRNA and 16S rRNA secondary and primary structure—The evolution of eukaryotes and their relation to archaebacteria

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The secondary structure of 5S rRNA has been elucidated by a cladistic analysis resulting in minimal models for eukaryotes, eubacteria, and halophilic-methanogenic archaebacteria, as well as for an ur-5S rRNA. This ancestor of all present-day 5S rRNA molecules is compared with an ur-tRNA and can be fitted into a tRNA-like structure allowing tertiary-structure interactions at the equivalent positions. A phylogenetic analysis of eukaryotic 5SrRNA and 16S rRNA sequences confirms particular monophyletic taxa: rhodophytes (red algae), chlorobionts (green algae and plants), metazoans (multicellular animals), euglenozoans (euglenids and trypanosomatids), a group of zygomycetes (excluding Kickxellales), a group of ascomycetes (excluding Protomycetales), two distinct groups of basidiomycetes, and a group consisting of phaeophyceans (brown algae) and oomycetes (water molds). The Euglenozoa show a distinct relation to the Eumycota (true fungi) and Metazoa. An analysis of archaebacterial sequences substantiates the paraphyletic nature of this third urkingdom defining the eubacteria as a sister group of the halophile-methanogens and defining the eukaryotes as a sister group of a particular lineage of the eocytes/sulfur-dependents. The latter fact implies that even the eocytes/sulfur-dependent archaebacteria are paraphyletic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cavalier-Smith T (1983) A 6-kingdom classification and a unified phylogeny. In: Schenk HEA, Schwemmler W (eds) Endocytobiology, vol II. deGruyter, Berlin, pp 1027–1034

    Google Scholar 

  • Delihas N, Andersen J, Singhal RP (1984) Structure, function and evolution of the 5S ribosomal RNAs. Progr Nucl Acid Res Mol Biol 31:161–190

    Google Scholar 

  • DeWachter R, Chen MW, Vandenberghe A (1982) Conservation of secondary structure in 5S ribosomal RNA: a uniform model for eukaryotic, eubacterial, archaebacterial and organelle sequences is energetically favourable. Biochimie 64:311–329

    PubMed  Google Scholar 

  • Digweed M, Pieler T, Kluwe D, Schuster L, Walker R, Erdmann VA (1986) Improved procedure for the isolation of a double-strand-specific ribonuclease and its application to structural analysis of various 5S rRNAs and tRNAs. Eur J Biochem 154:31–39

    Article  PubMed  Google Scholar 

  • Erdmann VA, Wolters J (1986) Collection of published 5S.5.8S and 4.5S ribosomal RNA sequences. Nucl Acids Res 14:r1-r59

    PubMed  Google Scholar 

  • Erdmann VA, Pieler T, Wolters J, Digweed M, Vogel D, Hartmann R (1986) Comparative structural and functional studies on small ribosomal RNAs. In: Hardesty B, Kramer G (eds) Structure, function and genetics of ribosomes. Springer, New York, pp 164–183

    Google Scholar 

  • Erdmann VA, Wolters JW, Pieler T, Digweed M, Specht T, Ulbrich N (1987) Evolution of organisms and organelles as studied by comparative computer and biochemical analyses of ribosomal 5S RNA structure. Ann NY Acad Sci, in press

  • Gibbs SP (1978) The chloroplasts ofEuglena may have evolved from symbiotic green algea. Can J Bot 56:2883–2889

    Google Scholar 

  • Gunderson JH, Sogin ML (1986) Gene 44:63–70

    Article  PubMed  Google Scholar 

  • Gunderson JH, McCutchan T, Sogin ML (1986) J Protozool, in press

  • Hahn J, Haug P (1986) Traces of archaebacteria in ancient sediments. System Appl Microbiol 7:178–183

    Google Scholar 

  • Hennig W (1966) Phylogenetic systematics. University of Illinois Press, Urbana

    Google Scholar 

  • Hori H, Osawa S (1978) Evolutionary change in 5S rRNA secondary structure and a phylogenetic tree of 54 5S RNA species. Proc Natl Acad Sci USA 76:381–385

    Google Scholar 

  • Hori H, Osawa S (1986) Evolutionary change in 5S rRNA secondary structure and a phylogenetic tree of 352 5S rRNA species, in press

  • Hori H, Lim BL, Osawa S (1985) Evolution of green plants as deduced from 5S rRNA sequences. Proc Natl Acad Sci USA 82:820–823

    Google Scholar 

  • Huysmans E, DeWachter R (1986a) Compilation of small ribosomal subunit RNA sequences. Nucl Acids Res 14:r73-r118

    PubMed  Google Scholar 

  • Huysmans E, DeWachter R (1986b) The distribution of 5S ribosomal RNA sequences in phenetic hyperspace. Implications for eubacterial, eukaryotic, archaebacterial and early biotic evolution. Endocyt Cell Res 3:133–155

    Google Scholar 

  • Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626

    PubMed  Google Scholar 

  • King JL, Jukes TH (1969) Non-Darwinian evolution. Science 164:788–798

    PubMed  Google Scholar 

  • Lake JA, Henderson E, Oakes M, Clark MW (1984) Eocytes: A new ribosome structure indicates a kingdom with a close relationship to eukaryotes. Proc Natl Acad Sci USA 81:3786–3790

    PubMed  Google Scholar 

  • Lake JA, Clark MW, Henderson E, Fay SP, Oakes M, Scheinman A, Thornber JP, Mah RA (1985) Eubacteria, halobacteria, and the origin of photosynthesis: the photocytes. Proc Natl Acad Sci USA 82:3716–3720

    PubMed  Google Scholar 

  • LéJohn HB (1974) Biochemical parameters of fungal phylogenies. Evol Biol 7:79–125

    Google Scholar 

  • Lim BL, Kawai H, Hori H, Osawa S (1986) Molecular evolution of 5S ribosomal RNA from red and brown algae. Jpn J Genet 61:169–176

    Google Scholar 

  • Maxwell ES, Liu J (1986) Nucleotide sequence ofCyanophora paradoxa cytoplasmic and cyanelle 5S ribosomal RNAs, in press

  • Moras D, Dock AC, Dumas P, Westhof E, Romby P, Ebel JP, Giegé R (1986) Anticodon-anticodon interaction induces conformational changes in tRNA: yeast tRNAasp, a model for tRNA recognition. Proc Natl Acad Sci USA 83:932–936

    PubMed  Google Scholar 

  • Ohama T, Kumazaki T, Hori H, Osawa S (1984) Evolution of multicellular animals as deduced from 5S rRNA sequences: a possible early emergence of the Mesozoa. Nucl Acids Res 12:5101–5108

    PubMed  Google Scholar 

  • Pringsheim N (1858) Beiträge zur Morphologie und Systematik der Algen. II. Die Saprolegnien. Jahrb Wiss Bot 1:284–304

    Google Scholar 

  • Schnabel R, Huet J, Thomm M, Zillig W, Sentenac A, Stetter KO (1983) Phylogeny of the archaebacteria and eukaryotes: homology of the DNA-dependent RNA polymerases. In: Schwemmler W and Schenk HEA (eds) Endocytobiology, vol II de Gruyter, Berlin, pp 895–912

    Google Scholar 

  • Schnare MN, Collings JC, Gray MW (1986) Structure and evolution of the small subunit ribosomal RNA gene ofCrithidia fasciculata. Curr Genet 10:405–410

    Article  PubMed  Google Scholar 

  • Sogin ML, Elwood HJ (1986) Primary structure of theParamecium tetraurelia small-subunit rRNA coding region: phylogenetic relationships within the Ciliophora. J Mol Evol 23: 53–60

    PubMed  Google Scholar 

  • Sogin ML, Swanton MT, Gunderson JH, Elwood HJ (1986a) Sequence of the small subunit ribosomal RNA gene from the hypotrichous ciliateEuplotes aediculatus. J Protozool 33:26–29

    PubMed  Google Scholar 

  • Sogin ML, Elwood HJ, Gunderson JH (1986b) Evolutionary diversity of eukaryotic small-subunit rRNA genes. Proc Natl Acad Sci USA 83:1383–1387

    PubMed  Google Scholar 

  • Spiegel FW, Feldman J (1985) Obligate amoebae of the protostelids: significance for the concept of eumycetozoa. Biosystems 18:377–386

    Article  PubMed  Google Scholar 

  • Stiekema WJ, Raué HA, Planta RJ (1980) Sequence analysis and in vitro maturation of five precursor 5S RNAs fromBacillus Q. Nucl Acids Res 8:2193–2211

    PubMed  Google Scholar 

  • Taylor FJR (1978) Problems in the development of an explicit hypothetical phylogeny of the lower eukaryotes. BioSystems 10:67–89

    Article  PubMed  Google Scholar 

  • Walker WF (1985) 5S and 5.8S ribosomal RNA sequences and protist phylogenetics. BioSystems 18:269–278

    Article  PubMed  Google Scholar 

  • Wallace DC (1983) Structure and evolution of organelle DNAs. In: Schenk HEA, Schwemmler W (eds) Endocytobiology, vol II. deGruyter, Berlin, pp 87–100

    Google Scholar 

  • Whittaker RH (1969) New concepts of kingdoms of organisms. Science 163:150–160

    PubMed  Google Scholar 

  • Willey R, Wibel RG (1985) A cytostome/cytopharynx in green euglenoid flagellates (Euglenales) and its phylogenetic implications. BioSystems 18:369–376

    Article  PubMed  Google Scholar 

  • Woese CR, Olsen GJ (1986) Archaebacterial phylogeny: perspectives on the urkingdoms. System Appl Microbiol 7:161–177

    Google Scholar 

  • Woese CR, Stackebrandt E, Macke TJ, Fox GE (1985) A phylogenetic definition of the major eubacterial taxa. System Appl Microbiol 6:143–151

    Google Scholar 

  • Wolters J, Erdmann VA (1986) A 5S rRNA tertiary structural model inspired by the known tRNA structure. Endocyt Cell Res 3:157–166

    Google Scholar 

  • Wolters J, Pieler T, Digweed M, Erdmann VA (1986) Reconciliation of comparative computer analysis and biochemical investigations of 5S rRNA secondary structure. In: Kandler O Zillig W (eds) Archaebacteria 85. Fischer, Stuttgart, pp 414–416

    Google Scholar 

  • Zillig W, Schnabel R, Tu J (1982) The phylogeny of archaebacteria, including novel anaerobic thermoacidophiles in the light of RNA polymerase structure. Naturwissenschaften 69:197–204

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the memory of Erik Huysmans who died on July 8, 1986, at the age of 29.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolters, J., Erdmann, V.A. Cladistic analysis of 5S rRNA and 16S rRNA secondary and primary structure—The evolution of eukaryotes and their relation to archaebacteria. J Mol Evol 24, 152–166 (1986). https://doi.org/10.1007/BF02099963

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099963

Key words

Navigation