Skip to main content
Log in

Comparison of theα-globin gene cluster structure in Perissodactyla

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

To investigate molecular evolution in a mammalian order with a comprehensive fossil record, we have constructedα-globin-like gene cluster maps for members of the order Perissodactyla. Although the arrangement of genes is the same in the five Equidae examined, the tapir and rhinoceros differ from each other and the horse in the position and number of their ζ genes, but not in the arrangement of theirα and θ genes. In contrast to morphological work, a dendrogram derived from restriction site maps associates the tapir with the horse rather than with the rhinoceros; however, this phylogeny is not statistically significant. Among the Equidae,Equus caballus emerges as an outgroup, in agreement with data from other disciplines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams J, Rothman ED (1982) Estimation of phylogenetic relationships from DNA restriction patterns and selection of endonuclease cleavage sites. Proc Natl Acad Sci USA 79: 3560–3564

    PubMed  Google Scholar 

  • Britten RJ (1986) Rates of DNA sequence evolution differ between taxonomic groups. Science 231:1393–1398

    PubMed  Google Scholar 

  • Brown WA (1983) Evolution of animal mitochondrial DNA. In: Nei M, Koehn RK (eds) Evolution of genes and proteins. Sinauer, Sunderland MA, pp 52–88

    Google Scholar 

  • Carroll RL (1987) Vertebrate paleontology and evolution. W.H. Freeman, Oxford

    Google Scholar 

  • Cheng J-F, Raid L, Hardison RC (1987) Block duplications of a ζ-ζ-α-θ gene set in the rabbitα-like globin gene cluster. J Biol Chem 262:5414–5421

    PubMed  Google Scholar 

  • Cheng J-F, Krane DE, Hardison RC (1988) Nucleotide sequence and expression of rabbit-globin genes ζ1, ζ2 and ζ3: pseudogenes generated by block duplications are transcriptionally competent. J Biol Chem 263:9981–9993

    PubMed  Google Scholar 

  • Clegg JB (1987a) Gene conversions in the horseα globin gene complex. Mol Biol Evol 4:492–503

    PubMed  Google Scholar 

  • Clegg JB (1987b) Can the product of the θ gene be a real globin? Nature 329:465–466

    PubMed  Google Scholar 

  • Clegg JB, Goodbourn SEY, Braend M (1984) Genetic organization of the polymorphic equineα globin locus and sequence of the BIIα 1 gene. Nucleic Acids Res 12:7847–7858

    PubMed  Google Scholar 

  • Fischel-Ghodsian N, Higgs DR, Beyer EC (1987) Function of a new globin gene. Nature 329:397

    Article  PubMed  Google Scholar 

  • Flint J, Taylor AM, Clegg JB (1988) Structure and evolution of the horse ζ globin locus. J Mol Biol 199:427–437

    Article  PubMed  Google Scholar 

  • George M, Ryder OA (1986) Mitochrondial DNA evolution in the genusEquus. Mol Biol Evol 3:535–546

    PubMed  Google Scholar 

  • Hardison RG, Gelinas RE (1986) Assignment of orthologous relationships among mammalianα-globin genes by examining flanking regions reveals a rapid rate of evolution. Mol Biol Evol 3:243–261

    PubMed  Google Scholar 

  • Harland WB, Cox AV, Llewellyn PG, Pickton AG, Smith AG, Walters R (1982) A geologic time scale. Cambridge University Press, Cambridge

    Google Scholar 

  • Helm-Bychowski KM, Wilson AC (1986) Rates of nuclear DNA evolution in pheasant-like birds: evidence from restriction maps. Proc Natl Acad Sci USA 83:688–692

    PubMed  Google Scholar 

  • Higgs DR, Vickers MA, Wilkie AOM, Pretorius I-M, Jarman AP, Weatherall DJ (1989) A review of the molecular genetics of the humanα-globin gene cluster. Blood 73:1081–1104

    PubMed  Google Scholar 

  • Hill AVS, Nicholls RD, Thein SL, Higgs DR (1985) Recombination within the human embryonic ζ-globin locus: a common ζ-ζ chromosome produced by gene conversion of the ψζ gene. Cell 42:809–819

    Article  PubMed  Google Scholar 

  • Hsu SL, Marks J, Shaw J-P, Tam M, Higgs DR, Shen C-C, Shen C-KJ (1988) Structure and expression of the human θ globin gene. Nature 331:94–96

    Article  PubMed  Google Scholar 

  • Kaminski M (1979) The biochemical evolution of the horse. Comp Biochem Physiol 63B:175–178

    Google Scholar 

  • Koop BF, Goodman M, Xu P, Chan, K, Slightom JL (1986) Primate eta-globin DNA sequences and man's place among the great apes. Nature 319:234–238

    Article  PubMed  Google Scholar 

  • Leder A, Swan P, Ruddle F, D'Eustachio P, Leder P (1981) Dispersion ofα-like globin genes of the mouse to three different chromosomes. Nature 293:196–200

    Article  PubMed  Google Scholar 

  • Leder A, Weir L, Leder P (1985) Characterization, expression and evolution of the mouse embryonic ζ-globin gene. 1985. Mol Cell Biol 5:1025–1033

    PubMed  Google Scholar 

  • Leung SO, Proudfoot NJ, Whitelaw E (1987) The gene for θ globin is transcribed in human fetal erythroid tissues. Nature 329:551–554

    Article  PubMed  Google Scholar 

  • Li WH, Tanimura M (1987) The molecular clock runs more slowly in man than in apes and monkeys. Nature 326:93–96

    Article  PubMed  Google Scholar 

  • McFadden BJ (1988) Horses, the fossil record, and evolution. A current perspective. Evol Biol 22:131–158

    Google Scholar 

  • Miyamoto MM, Slightom JL, Goodman M (1987) Phylogenetic relations of humans and African apes from DNA sequences in the ψ eta-globin region. Science 238:369–372

    PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. II Gene frequency data. J Mol Evol 19:153–170

    PubMed  Google Scholar 

  • Old JM, Higgs DR (1983) Gene analysis. In: DJ Weatherall (ed) Methods in haematology, vol. 6, pp. 74–102

  • Prothero DR, Manning E, Hanson CB (1986) The phylogeny of the Rhinocerotidae. Zool J Linn Soc 87:341–366

    Google Scholar 

  • Proudfoot NJ, Gil A, Maniatis T (1982) The structure of the human ζ globin gene and a closely linked, nearly identical pseudogene. Cell 31:533–563

    Article  Google Scholar 

  • Radinsky LB (1969) The early evolution of the Perissodactyla. Evolution 23:308–328

    Google Scholar 

  • Sakoyama Y, Hong K-J, Byun S, Hisajima H, Ueda S, Yaoita Y, Hidenori H, Miyata T, Honjo T (1987) Nucleotide sequences of immunoglobulin ε genes of chimpanzee and orangutan: DNA molecular clock and hominoid evolution. Proc Natl Acad Sci USA 84:1080–1084

    PubMed  Google Scholar 

  • Savage RJG, Long MR (1986) Mammal evolution. British Museum (Natural History), London

    Google Scholar 

  • Simpson GG (1951) Horses. Oxford University Press, New York

    Google Scholar 

  • Sneath PHA (1986) Estimating uncertainty in evolutionary tress from Manhattan-distance triads. Syst Zool 35:470–488

    Google Scholar 

  • Sourdis J, Krimbas C (1987) Accuracy of phylogenetic trees estimated from DNA sequence data. Mol Biol Evol 4:159–166

    PubMed  Google Scholar 

  • Sourdis J, Nei M (1988) Relative efficiencies of the maximum parsimony and distance-matrix methods in obtaining the correct phylogenetic tree. Mol. Biol Evol 5:298–311

    PubMed  Google Scholar 

  • Wernke SM, Lingrel JB (1986) Nucleotide sequence of the goat embryonicα globin gene (ζ) and linkage and evolutionary analysis of the completeα globin cluster. J Mol Biol 192:457–477

    Article  PubMed  Google Scholar 

  • Wilson AC, Ochman H, Prager EM (1987) Molecular time scale for evolution. Trends Genet 3:241–247

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flint, J., Ryder, O.A. & Clegg, J.B. Comparison of theα-globin gene cluster structure in Perissodactyla. J Mol Evol 30, 36–42 (1990). https://doi.org/10.1007/BF02102451

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02102451

Key words

Navigation