Skip to main content
Log in

Use of recombinant poxviruses to stimulate anti-melanoma T cell reactivity

  • Original Articles
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background: Dendritic cells (DC) are potent professional antigen-presenting cells that can activate naive T lymphocytes and initiate cellular immune responses. As adjuvants, DC may be useful for enhancing immunogenicity and mediating tumor regression. Endogenous expression of antigen by DC could offer the potential advantage of allowing prolonged constitutive presentation of endogenously processed epitopes and exploitation of multiple restriction elements for the presentation of the same antigen.

Methods: DC were prepared from the peripheral blood of HLA A*0201 patients with metastatic melanoma in the presence of IL-4 (1000 IU/mL) and GMCSF (1000 IU/mL). Recombinant vaccinia and fowlpox viruses encoding the hMART-1 gene were constructed and used to infect DC. The efficiency of infection and expression of the MART-1 antigen were assessed by immunohistochemistry and intracellular FACS analyses. Cytotoxic lymphocytes (CTL) were generated by the stimulation of CD8+ T cells, with DC expressing the recombinant gene. Reactivity of the CTL was determined at weeks 1 and 2 by the amount of IFN-γ released.

Results: DC were infected with recombinant poxviruses and demonstrated specific melanoma antigen expression by immunohistochemistry, immunofluorescence, and intracellular FACS analysis. The expression by DC of MART-1 MAA after viral infection was sufficient to generate CD8+ T lymphocytes that recognized naturally processed epitopes on tumor cells in 10 of 11 patients.

Conclusions: Human DC are receptive to infection by recombinant poxviruses encoding MAA genes and are capable of efficiently processing and presenting these MAA to cytotoxic T cells. The potential advantage of this approach is the ability to present specific antigen independent of the identification of the epitope or the MHC restriction element. This strategy may be useful for the identification of relevant epitopes for a diverse number of HLA alleles and for active immunization in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosenberg SA, Lotze MT, Yang JC, et al. Experience with the use of high-dose interleukin-2 in the treatment of 652 cancer patients.Ann Surg 1989;210:474–84.

    CAS  PubMed  Google Scholar 

  2. Rosenberg SA, Packard BS, Aebersold PM, et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report [see comments].N Engl J Med 1988;319:1676–80.

    CAS  PubMed  Google Scholar 

  3. Rosenberg SA, Lotze MT, Muul LM, et al. A new approach to the therapy of cancer based on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2.Surgery 1986;100:262–72.

    CAS  PubMed  Google Scholar 

  4. Rosenberg SA, Spiess P, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes.Science 1986;233:1318–21.

    CAS  PubMed  Google Scholar 

  5. Kawakami Y, Eliyahu S, Sakaguchi K, et al. Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes.J Exp Med 1994;180:347–52.

    Article  CAS  PubMed  Google Scholar 

  6. Kawakami Y, Eliyahu S, Delgado CH, et al. Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor.Proc Natl Acad Sci USA 1994;91:3515–9.

    CAS  PubMed  Google Scholar 

  7. Kawakami Y, Eliyahu S, Delgado CH, et al. Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection.Proc Natl Acad Sci USA 1994;91:6458–62.

    CAS  PubMed  Google Scholar 

  8. Kawakami Y, Zakut R, Topalian SL, Stotter H, Rosenberg SA. Shared human melanoma antigens. Recognition by tumor-infiltrating lymphocytes in HLA-A2.1-transfected melanomas.J Immunol 1992;148:638–43.

    CAS  PubMed  Google Scholar 

  9. Kawakami Y, Eliyahu S, Jennings C, et al. Recognition of multiple epitopes in the human melanoma antigen gp100 by tumor-infiltrating T lymphocytes associated with in vivo tumor regression.J Immunol 1995;154:3961–8.

    CAS  PubMed  Google Scholar 

  10. Cox AL, Skipper J, Chen Y, et al. Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines.Science 1994;264:716–9.

    CAS  PubMed  Google Scholar 

  11. Skipper JC, Kittlesen DJ, Hendrickson RC, et al. Shared epitopes for HLA-A3-restricted melanoma-reactive human CTL include a naturally processed epitope from Pmel-17/gp100.J Immunol 1996;157:5027–33.

    CAS  PubMed  Google Scholar 

  12. Kang X, Kawakami Y, el-Gamil M, et al. Identification of a tyrosinase epitope recognized by HLA-A24-restricted, tumor-infiltrating lymphocytes.J Immunol 1995;155:1343–8.

    CAS  PubMed  Google Scholar 

  13. Wolfel T, Van Pel A, Brichard V, et al. Two tyrosinase nonapeptides recognized on HLA-A2 melanomas by autologous cytolytic T lymphocytes.Eur J Immunol 1994;24:759–64.

    CAS  PubMed  Google Scholar 

  14. Van den Eynde B, Peeters O, De Backer O, Gaugler B, Lucas S, Boon T. A new family of genes coding for an antigen recognized by autologous cytolytic T lymphocytes on a human melanoma.J Exp Med 1995;182:689–98.

    PubMed  Google Scholar 

  15. Gaugler B, Van den Eynde B, van der Bruggen P, et al. Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes.J Exp Med 1994;179:921–30.

    Article  CAS  PubMed  Google Scholar 

  16. Boel P, Wildmann C, Sensi ML, et al. BAGE: a new gene encoding an antigen recognized on human melanomas by cytolytic T lymphocytes.Immunity 1995;2:167–75.

    Article  CAS  PubMed  Google Scholar 

  17. Wang RF, Parkhurst MR, Kawakami Y, Robbins PF, Rosenberg SA. Utilization of an alternative open reading frame of a normal gene in generating a novel human cancer antigen.J Exp Med 1996;183:1131–40.

    CAS  PubMed  Google Scholar 

  18. Robbins PF, el-Gamil M, Li YF, et al. Cloning of a new gene encoding an antigen recognized by melanoma-specific HLA-A24-restricted tumor-infiltrating lymphocytes.J Immunol 1995;154:5944–50.

    CAS  PubMed  Google Scholar 

  19. Marincola FM, Hijazi YM, Fetsch P, et al. Analysis of expression of the melanoma associated antigens MART-1 and gp100 in metastatic melanoma cell lines and in in situ lesions.J Immunother 1996;19:192–205.

    CAS  Google Scholar 

  20. Cormier JN, Salgaller ML, Prevette T, et al. Enhancement of cellular immunity in melanoma patients immunized with a peptide from MART-1/Melan A.Cancer J Sci Am 1997;3:37–44.

    CAS  PubMed  Google Scholar 

  21. Salgaller ML, Marincola FM, Cormier JN, Rosenberg SA. Immunization against epitopes in the human melanoma antigen gp100 following patient immunization with synthetic peptides.Cancer Res 1996;56:4749–57.

    CAS  PubMed  Google Scholar 

  22. Steinman RM. The dendritic cell system and its role in immunogenicity.Ann Rev Immunol 1991;9:271–96.

    Article  CAS  Google Scholar 

  23. Steinman RM, Lustig DS, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. 3. Functional properties in vivo.J Exp Med 1974;139:1431–45.

    CAS  PubMed  Google Scholar 

  24. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution.J Exp Med 1973;137:1142–62.

    Article  CAS  PubMed  Google Scholar 

  25. Porgador A, Gilboa E. Bone marrow-generated dendritic cells pulsed with a class I-restricted peptide are potent inducers of cytotoxic T lymphocytes.J Exp Med 1995;182:255–60.

    Article  CAS  PubMed  Google Scholar 

  26. Huang AY, Golumbek P, Ahmadzadeh M, Jaffee E, Pardoll D, Levitsky H. Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens.Science 1994;264:961–5.

    CAS  PubMed  Google Scholar 

  27. Constant S, Sant' Angelo D, Pasqualini T, et al. Peptide and protein antigens require distinct antigen-presenting cell subsets for the priming of CD4+ T cells.J Immunol 1995;154:4915–23.

    CAS  PubMed  Google Scholar 

  28. Inaba K, Metlay JP, Crowley MT, Steinman RM. Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHC-restricted T cells in situ [published erratum appears inJ Exp Med 1990 Oct 1;172(4):1275].J Exp Med 1990;172:631–40.

    Article  CAS  PubMed  Google Scholar 

  29. Levin D, Constant S, Pasqualini T, Flavell R, Bottomly K. Role of dendritic cells in the priming of CD4+ T lymphocytes to peptide antigen in vivo.J Immunol 1993;151:6742–50.

    CAS  PubMed  Google Scholar 

  30. Qazi R, Savlov ED. Peritoneovenous shunt for palliation of malignant ascites.Cancer 1982;49:600–2.

    CAS  PubMed  Google Scholar 

  31. Caux C, Massacrier C, Dezutter-Dambuyant C, et al. Human dendritic Langerhans cells generated in vitro from CD34+ progenitors can prime naive CD4+ T cells and process soluble antigen.J Immunol 1995;155:5427–35.

    CAS  PubMed  Google Scholar 

  32. Caux C, Dezutter-Dambuyant C, Schmitt D, Banchereau J. GMCSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells.Nature 1992;360:258–61.

    Article  CAS  PubMed  Google Scholar 

  33. Paglia P, Chiodoni C, Rodolfo M, Colombo MP. Murine dendritic cells loaded in vitro with soluble protein prime cytotoxic T lymphocytes against tumor antigen in vivo [see comments].J Exp Med 1996;183:317–22.

    Article  CAS  PubMed  Google Scholar 

  34. van der Burg SH, Visseren MJ, Brandt RM, Kast WM, Melief CJ. Immunogenicity of peptides bound to MHC class I molecules depends on the MHC-peptide complex stability.J Immunol 1996;156:3308–14.

    PubMed  Google Scholar 

  35. Reid CD, Stackpoole A, Tikerpae J. TNF and GM-CSF dependent growth of an early progenitor of dendritic Langerhans cells in human bone marrow.Adv Exp Med Biol 1993;329:257–62.

    CAS  PubMed  Google Scholar 

  36. Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha.J Exp Med 1994;179:1109–18.

    Article  CAS  PubMed  Google Scholar 

  37. Becker Y. Dendritic cell activity against primary tumors: an overview.In Vivo 1993;7:187–91.

    CAS  PubMed  Google Scholar 

  38. Hsu FJ, Benike C, Fagnoni F, et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells.Nat Med 1996;2:52–8.

    CAS  PubMed  Google Scholar 

  39. Paglia P, Chiodoni C, Rodolfo M, Colombo MP. Murine dendritic cells loaded in vitro with soluble protein prime cytotoxic T lymphocytes against tumor antigen in vivo [see comments].J Exp Med 1996;183:317–22.

    Article  CAS  PubMed  Google Scholar 

  40. Celluzzi CM, Mayordomo JI, Storkus WJ, Lotze MT, Falo LD Jr. Peptide-pulsed dendritic cells induce antigen-specific CTL-mediated protective tumor immunity [see comments].J Exp Med 1996;183:283–7.

    Article  CAS  PubMed  Google Scholar 

  41. Zitvogel L, Mayordomo JI, Tjandrawan T, et al. Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines [see comments].J Exp Med 1996;183:87–97.

    Article  CAS  PubMed  Google Scholar 

  42. Boczkowski D, Nair SK, Snyder D, Gilboa E. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo.J Exp Med 1996;184:465–72.

    Article  CAS  PubMed  Google Scholar 

  43. Mayordomo JI, Zorina T, Storkus WJ, et al. Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity.Nat Med 1995;1:1297–1302.

    Article  CAS  PubMed  Google Scholar 

  44. Mehta-Damani A, Markowicz S, Engleman EG. Generation of antigen-specific CD8+ CTLs from naive precursors.J Immunol 1994;153:996–1003.

    CAS  PubMed  Google Scholar 

  45. Bakker AB, Marland G, de Boer AJ, et al. Generation of antimelanoma cytotoxic T lymphocytes from healthy donors after presentation of melanoma-associated antigen-derived epitopes by dendritic cells in vitro.Cancer Res 1995;55:5330–34.

    CAS  PubMed  Google Scholar 

  46. Bhardwaj N, Bender A, Gonzalez N, Bui LK, Garrett MC, Steinman RM. Influenza virus-infected dendritic cells stimulate strong proliferative and cytolytic responses from human CD8+ T cells.J Clin Invest 1994;94:797–807.

    CAS  PubMed  Google Scholar 

  47. Christinck ER, Luscher MA, Barber BH, Williams DB. Peptide binding to class I MHC on living cells and quantitation of complexes required for CTL lysis.Nature 1991;352:67–70.

    Article  CAS  PubMed  Google Scholar 

  48. Kundig TM, Shahinian A, Kawai K, et al. Duration of TCR stimulation determines costimulatory requirement of T cells.Immunity 1996;5:41–52.

    Article  CAS  PubMed  Google Scholar 

  49. von Rohr A, Ghosh AK, Thatcher N, Stern PL. Immunomodulation during prolonged treatment with combined interleukin-2 and interferon-alpha in patients with advanced malignancy.Br J Cancer 1993;67:163–71.

    Google Scholar 

  50. Rivoltini L, Loftus DJ, Barracchini K, et al. Binding and presentation of peptides derived from melanoma antigens MART-1 and gp100 by HLA-A2 subtypes: implications for peptide-based immunotherapy.J Immunol 1996;156:3882–91.

    CAS  PubMed  Google Scholar 

  51. Krausa P, Brywka M, Savage D, et al. Genetic polymorphism within HLA-A*02: significant allelic variation revealed in different populations.Tissue Antigens 1995;45:223–31.

    CAS  PubMed  Google Scholar 

  52. Rivoltini L, Baracchini KC, Viggiano V, et al. Quantitative correlation between HLA Class I allele expression and recognition of melanoma cells by antigen specific cytotoxic T lymphocytes.Cancer Res 1995;55:3149–57.

    CAS  PubMed  Google Scholar 

  53. Cerundolo V, Alexander J, Anderson K, et al. Presentation of viral antigen controlled by a gene in the major histocompatibility complex.Nature 1990;345:449–52.

    Article  CAS  PubMed  Google Scholar 

  54. Wei ML, Cresswell P. HLA-A2 molecules in an antigen-processing mutant cell contain signal sequence-derived peptides [see comments].Nature 1992;356:443–6.

    Article  CAS  PubMed  Google Scholar 

  55. Parkhurst MR, Salgaller ML, Southwood S, et al. Improved induction of melanoma reactive CTL with peptides from the melanoma antigen gp100 modified at HLA-A*0201 binding residues.J Immunol 1996;157: 2539–48.

    CAS  PubMed  Google Scholar 

  56. Gritz L, Destree A, Cormier N, et al. Generation of hybrid genes and proteins by vaccinia virus-mediated recombination: application to human immunodeficiency virus type 1 env.J Virol 1990;64:5948–57.

    CAS  PubMed  Google Scholar 

  57. Panicali D, Grzelecki A, Huang C. Vaccinia virus vectors utilizing the beta-galactosidase assay for rapid selection of recombinant viruses and measurement of gene expression.Gene 1986;47:193–9.

    Article  CAS  PubMed  Google Scholar 

  58. Jenkins S, Gritz L, Fedor C, O'Neil E, Cohen L, Panicali D. Formation of lentivirus particles in mammalian cells infected with recombinant fowlpox virus.AIDS Res Hum Retroviruses 1996;7:991–8.

    Google Scholar 

  59. O'Neil BH, Kawakami Y, Restifo NP, Bennink JR, Yewdell JW, Rosenberg SA. Detection of shared MHC-restricted human melanoma antigens after vaccinia virus-mediated transduction of genes coding for HLA.J Immunol 1993;151:1410–8.

    PubMed  Google Scholar 

  60. Marincola FM, Shamamian P, Alexander RB, et al. Loss of HLA haplotype and B locus down-regulation in melanoma cell lines.J Immunol 1994;153:1225–37.

    CAS  PubMed  Google Scholar 

  61. Zhou L, Tedder TF. Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily.J Immunol 1995;154:3821–35.

    CAS  PubMed  Google Scholar 

  62. Rivoltini L, Kawakami Y, Sakaguchi K, et al. Induction of tumor reactive CTL from peripheral blood and tumor infiltrating lymphocytes of melanoma patients by in vitro stimulation with an immunodominant peptide of the human melanoma antigen MART-1.J Immunol 1995;154:2257–65.

    CAS  PubMed  Google Scholar 

  63. Restifo NP. Recombinant anti-cancer vaccines.Cancer J Sci Am 1996;2:16–8.

    PubMed  Google Scholar 

  64. Sheil JM, Shepherd SE, Klimo GF, Paterson Y. Identification of an autologous insulin B chain peptide as a target antigen for H-2Kb-restricted cytotoxic T lymphocytes.J Exp Med 1992;175:545–52.

    Article  CAS  PubMed  Google Scholar 

  65. Chen PW, Wang M, Bronte V, Zhai Y, Rosenberg SA, Restifo NP. Therapeutic antitumor response after immunization with a recombinant adenovirus encoding a model tumor-associated antigen.J Immunol 1996;156:224–31.

    CAS  PubMed  Google Scholar 

  66. Bronte V, Tsung K, Rao JB, et al. IL-2 enhances the function of recombinant poxvirus-based vaccines in the treatment of established pulmonary metastases.J Immunol 1995;154:5282–92.

    CAS  PubMed  Google Scholar 

  67. Wang M, Bronte V, Chen PW, et al. Active immunotherapy of cancer with a nonreplicating recombinant fowlpox virus encoding a model tumor-associated antigen.J Immunol 1995;154:4685–92.

    CAS  PubMed  Google Scholar 

  68. Irvine KR, McCabe BJ, Rosenberg SA, Restifo NP. Synthetic oligonucleotide expressed by a recombinant vaccinia virus elicits therapeutic CTL.J Immunol 1995;154:4651–7.

    CAS  PubMed  Google Scholar 

  69. Lipford GB, Bauer S, Wagner H, Heeg K. Peptide engineering allows cytotoxic T-cell vaccination against human papilloma virus tumour antigen, E6.Immunology 1995;84:298–303.

    CAS  PubMed  Google Scholar 

  70. Slamon DJ, Godolphin W, Jones LA, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer.Science 1989;244:707–12.

    CAS  PubMed  Google Scholar 

  71. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene.Science 1987;235:177–82.

    CAS  PubMed  Google Scholar 

  72. Peoples GE, Goedegebuure PS, Smith R, Linehan DC, Yoshino I, Eberlein TJ. Breast and ovarian cancer-specific cytotoxic T lymphocytes recognize the same HER2/neu-derived peptide.Proc Natl Acad Sci USA 1995;92:432–6.

    CAS  PubMed  Google Scholar 

  73. Young JW, Inaba K. Dendritic cells as adjuvants for class I major histocompatibility complex-restricted antitumor immunity [comment].J Exp Med 1996;183:7–11.

    Article  CAS  PubMed  Google Scholar 

  74. Inaba K, Metlay JP, Crowley MT, Steinman RM. Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHC-restricted T cells in situ [published erratum appears inJ Exp Med 1990 Oct 1;172(4):1275].J Exp Med 1990;172:631–40.

    Article  CAS  PubMed  Google Scholar 

  75. Kim CJ, Prevette T, Cormier J, et al. Dendritic cells infected with poxviruses encoding MART-1/MelanA sensitize T lymphocytes in vitro.J Immunother 1997;20:276–86.

    CAS  PubMed  Google Scholar 

  76. Marincola FM, Shamamian P, Rivoltini L, et al. HLA associations in the anti-tumor response against malignant melanoma.J Immunother 1996;18:242–52.

    Google Scholar 

  77. Player MA, Barracchini KC, Simonis TB, et al. Differences in frequency distribution of HLA-A2 sub-types between American and Italian Caucasian melanoma patients: relevance for epitope specific vaccination protocols.J Immunother 1996;19:357–63.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, C.J., Cormier, J., Roden, M. et al. Use of recombinant poxviruses to stimulate anti-melanoma T cell reactivity. Annals of Surgical Oncology 5, 64–76 (1998). https://doi.org/10.1007/BF02303766

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02303766

Key Words

Navigation