Skip to main content
Log in

Qualitative theory of stochastic dynamical systems—Applications to life sciences

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Qualitative theory for multidimensional stochastic dynamical models\(\dot x = f(x, \xi )\) is presented where the random influences ξ may be white or colored, i.e. a (possibly bounded) diffusion process. We concentrate on transience, stationary solutions and boundary behavior and discuss a set-up for reliable simulations. The method consists in associating a deterministic control system where the (approximate) controllability properties determine the qualitative behavior of the stochastic system. Applications to some biological systems indicate the usefulness of qualitative theory in life sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Albrecht, F. and N. Wax. 1978. “The Controllability of Certain Nonlinear Planar Systems.”J. math. Analysis Applic. 63, 762–771.

    Article  MATH  MathSciNet  Google Scholar 

  • Arnold, L., H. Crauel and V. Wihstutz. 1983. “Stabilization of Linear Systems by Noise.”Siam J. Control Optimization 21.

  • —, W. Horsthemke and R. Lefever. 1978. “White and Coloured External Noise and Transition Phenomena in Nonlinear Systems.”Z. Phys. (B) 29, 367–373.

    Google Scholar 

  • —— and J. Stucki. 1979. “The Influence of External Real and White Noise on the Lotka-Volterra Model.”Biomed. J. 21, 451–471.

    MATH  MathSciNet  Google Scholar 

  • — and W. Kliemann. 1983. “Wualitative Theory of Stochastic Systems.” InProbabilistic Analysis and Related Topics. Ed. A. T. Barucha-Reid, Vol. 3. New York: Academic Press.

    Google Scholar 

  • — and R. Lefever (Eds.) 1981.Stochastic Nonlinear Systems. Berlin: Springer Verlag.

    MATH  Google Scholar 

  • Baitman, M. M. 1978. “Controllability Regions in the Plane.”Diff. Equations 14, 407–417.

    MATH  Google Scholar 

  • Balslev, I. and H. Degn. 1975. “Spatial Instability in Simple Reaction Schemes.”J. theor. Biol. 49, 173–177.

    Google Scholar 

  • Bhattacharya, R. N. 1978. “Criteria for Recurrence and Existence of Invariant Measures for multidimensional Diffusions.”Ann. Prob. 6, 541–553.

    MATH  Google Scholar 

  • Blankenship, G. and G. C. Papanicolaou. 1978. “Stability and Control of Stochastic Systems with Wide Band Noise Disturbances.”SIAM J. appl. Math. 34, 437–476.

    Article  MATH  MathSciNet  Google Scholar 

  • Boothby, W. M. 1975.An Introduction to Differentiable Manifolds and Riemannian Geometry. New York: Academic Press.

    MATH  Google Scholar 

  • Changeux, J.-P. and A. Danchin. 1976. “Selective Stabilization of Developing Synapses as a Mechanism for the Specification of Neuronal Networks.”Nature, Lond. 264, 705–712.

    Article  Google Scholar 

  • Çinlar, E., J. Jacod, P. Protter and M. J. Sharpe. 1980. “Semimartingales and Markov Processes.”Z. Wahrscheinlichkeitstheorie verw. Gebiete 54, 161–219.

    Article  MATH  Google Scholar 

  • Clay, J. R. and N. S. Goel. 1973. “Diffusion Models for Firing of a Neuron with Varying threshold.”J. theor. Biol. 39, 633–644.

    Article  Google Scholar 

  • Crandall, M. G. 1972. “A Generalization of Peano’s Existence Theorem and Flow Invariance.” Proc.Am. math. Soc. 36, 151–155.

    Article  MATH  MathSciNet  Google Scholar 

  • Degn, H. and D. E. F. Harrison. 1969. “Theory of Oscillations of Respiration Rate in Continuous Culture ofKlebsiella aerogenes.”J. theor. Biol. 22 238–248.

    Article  Google Scholar 

  • Ehrhardt, M. 1983. “Invariant Probabilities for Systems in Ramdom Environment with Applications to the Brusselator.”Bull. math. Biol. 45, 579–590.

    Article  MATH  MathSciNet  Google Scholar 

  • Friedman, A. 1975, 1976.Stochastic Differential Equations and Applications, Vols. I and II. New York: Academic Press.

    MATH  Google Scholar 

  • Getz, W. M. (Ed.). 1980.Mathematical Modelling in Biology and Ecology. Berlin: Springer Verlag.

    MATH  Google Scholar 

  • Goel, N. S. and N. Richter-dyn. 1974.Stochastic Models in Biology. New York: Academic Press.

    Google Scholar 

  • Gihman, I. I. and A. V. Skorohod. 1979.The Theory of Stochastic Processes III. Berlin: Springer Verlag.

    MATH  Google Scholar 

  • Hamada, Y. 1981. “Dynamics of the Noise-induced Phase Transition of the Verhulst-Model.”Prog. theor. Phys., Osaka 65, 850–860.

    Article  MATH  MathSciNet  Google Scholar 

  • Hasminskii, R. Z. 1980.Stochastic Stability of Differential equations. Alphen aan den Rijn: Sijthoff and Noordhoff.

    Google Scholar 

  • Hermes, H. 1974. “On Local and Global Controllability.”Siam J. Control. 12, 252–261.

    Article  MATH  MathSciNet  Google Scholar 

  • Hoppensteadt, F. 1975.Mathematical Theories of Populations: Demographics, Geneties and Epidemics. Philadelphia: SIAM.

    Google Scholar 

  • Horsthemke, W. 1981. “Noise Induced Transitions.” InStochastic Nonlinear Systems. Ed. L. Arnold and R. Lefever, pp. 116–126. Berlin: Springer Verlag.

    Google Scholar 

  • — and M. Malek-Mansour. 1976. “The Influence of External Noise on Non-equilibrium Phase Transitions.”Z. Phys. (B) 24, 307–313.

    Google Scholar 

  • Hunt, L. R. 1980. “Global Controllability of Nonlinear Systems in Two Dimensions.”Math. Systems Theory 13, 361–376.

    Article  MATH  Google Scholar 

  • Ichihara, K. and H. Kunita. 1974. “A Classification of the Second Order Degenerate Elliptic Operators and its Probabilistic Characterization.”Z. Wahrscheinlichkeitstheorie verw. Gebiete 30, 235–254;39, 81–84.

    Article  MATH  MathSciNet  Google Scholar 

  • Kesten, H. and Y. Ogura. 1981. “Recurrence Properties of Lotka-Volterra Models with Random Fluctuations.”J. math. Soc. Japan 32, 335–366.

    Article  MathSciNet  Google Scholar 

  • Kliemann, W. 1979. “Some Exact Results on Stability and Growth of Linear Parameter Excited Stochastic Systems.” InStochastic Control Theory and Stochastic Differential Systems, Ed. M. Kohlmann and W. Vogel, pp. 456–471. Berlin: Springer Verlag.

    Google Scholar 

  • Kliemann, W. 1980. Qualitative Theorie nichtlinearer stochastischer Systeme. PhD. Thesis, University of Bremen.

  • Kliemann, W. and W. Rümelin. 1981. “On the Growth of Linear Systems Parametrically Disturbed by a Diffusion Process.” Report No. 27, Forschungsschwerpunkt Dynamische Systeme, University of Bremen.

  • Lefever, R. 1981. “Noise Induced Transitions in Biological Systems.” InStochastic Nonlinear Systems. Ed. L. Arnold and R. Lefever, pp. 127–136. Berlin: Springer Verlag.

    Google Scholar 

  • Ludwig, V. 1974.Stochastic Population Theories. Berlin: Springer Verlag.

    Google Scholar 

  • Maruyama, T. 1977.Stochastic Problems in Population Genetics. Berlin: Springer Verlag.

    MATH  Google Scholar 

  • — 1981. “Stochastic Problems in Population Genetics: Applications of Ito’s Stochastic Integrals.” InStochastic Nonlinear Systems. Ed. L. Arnold and R. Lefever, pp. 154–161. Berlin: Springer Verlag.

    Google Scholar 

  • Mayne, D. and R. W. Brockett (Eds.). 1973.Geometric Methods in Systems Theory. Dordrecht: Reidel.

    Google Scholar 

  • Pacault, A. and C. Vidal (Eds.). 1979.Synergetics, Far From Equilibrium. Berlin: Springer Verlag.

    Google Scholar 

  • Redheffer, R. M. 1972. “The Theorems of Bony and Brezis on Flow-invariant Sets.”Am. Math. Monthly 79, 740–747.

    Article  MATH  MathSciNet  Google Scholar 

  • Ricciardi, L. M. 1977.Diffusion Processes and Related Topics in Biology. Berlin: Springer Verlag.

    MATH  Google Scholar 

  • Rubia, J. de la and M. G. Velarde. 1978. “Further Evidence of a Phase Transition Induced by External Noise.”Phys. Lett. 69 A, 304–306.

    Google Scholar 

  • Rümelin, W. 1982a. “Numerical Treatment of Stochastic Differential Equations.”SIAM J. Num. Analysis 19, 604–613.

    Article  MATH  Google Scholar 

  • Rümelin, W. 1982b. “Stationary Solutions of Nonlinear Systems Disturbed by Markovian Noise.” Report No. 62, Forschungsschwerpunkt Dynamische Systeme, University of Bremen.

  • Schuss, Z. 1980.Theory and Applications of Stochastic Differential Equations New York: Wiley.

    MATH  Google Scholar 

  • Stroock, D. W. and S. R. S. Varadhan. 1972. “On the Support of Diffusion Processes with Applications to the Strong Maximum Principle.” Proc. Sixth Berkeley Symp., Vol. III, pp. 333–359.

    MathSciNet  Google Scholar 

  • Suzuki, M., K. Kaneko and F. Sasagawa. 1981. “Phase Transition and Slowing Down in Non-equilibrium Stochastic Processes.”Prog. theor. Phys. Osaka 65, 828–849.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kliemann, W. Qualitative theory of stochastic dynamical systems—Applications to life sciences. Bltn Mathcal Biology 45, 483–506 (1983). https://doi.org/10.1007/BF02459584

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02459584

Keywords

Navigation