Skip to main content
Log in

Theophylline protects against glycerol-induced acute renal failure: Regulation of heme oxygenase-1 and glutathione in rat kidney

  • Original Article
  • Experimental Investigations
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

To investigate the mechanism of glycerol-induced renal injury, we examined kidney levels of the cellular antioxidant glutathione and heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme degradation, after glycerol injection.

Methods

Male Wistar rats were injected with glycerol to induce acute renal failure. Serum creatinine levels were used as a marker of renal function at 24 hours after glycerol injection. Theophylline and buthionine sulfoximine or vehicle were administered to the rats after glycerol injection, and we determined renal glutathione levels (by biochemical assay) and the levels of HO-1 protein and messenger ribonucleic acid (mRNA; using immunoblot analysis [kidney only]) in various rat organs at 24 hours after glycerol injection.

Results

Glutathione levels abruptly declined after glycerol injection, reached a minimum at 4 hours, then returned to about two thirds of control levels at 24 hours. HO-1 protein was detected at 4 hours and reached a maximum at 24 hours. The induction of HO-1 protein was observed only in the kidney. HO-1 mRNA was faintly expressed at 2 hours, increased until at least 8 hours, and was not detected 24 hours after the treatment. When theophylline was administered to glycerol-injected rats, renal function improved and glutathione levels increased. In addition, the levels of HO-1 protein decreased, compared with those of glycerol-treated rats not given theophylline.

Conclusions

These results suggest that theophylline may act by modulating the HO-1 directly or indirectly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shah SV, Walker PD, Evidence suggesting a role for hydroxyl radical in glycerol-induced acute renal failure. Am J Physiol 1989;255:F438-F443.

    Google Scholar 

  2. Vogt BA, Alam J, Croatt AJ, Vercellotti GM, Nath KA. Acquired resistance to acute oxidative stress. Possible role of heme oxygenase and ferritin. Lab Invest 1995;72:474–483.

    CAS  PubMed  Google Scholar 

  3. Paller MS. Hemoglobin- and myoglobin-induced acute renal failure in rats: role of iron in nephrotoxicity. Am J Physiol 1988;255:F539-F544.

    CAS  PubMed  Google Scholar 

  4. Tappel AL. The mechanism of the oxidation of unsaturated fatty acids catalyzed by hematin compounds. Arch Biochem Biophys 1953;44:378–395.

    Article  CAS  PubMed  Google Scholar 

  5. Stocker R, Glazer AN, Ames BN. Antioxidant activity of albumin bound bilirubin. Proc Natl Acad Sci USA 1987;84:5918–5922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Aust SD, Svingen BA. The role of iron in enzymatic lipid peroxidation. In: Pryor WA (ed) Free radicals in biology. New York: Academic Press, 1982;5:1–28.

    Google Scholar 

  7. Brüne B, Ullrich V. Inhibition of platelet aggregation by carbon monoxide is mediated by activation of guanylate cyclase. Mol Pharmacol 1987;32:497–504.

    PubMed  Google Scholar 

  8. Furchgott RF, Jothiananan D. Endothelium-dependent and-independent vasodilation involving cyclic GMP: relaxation induced by nitric oxide, carbon monoxide and light. Blood Vessels 1991;28:52–61.

    CAS  PubMed  Google Scholar 

  9. Ewing JF, Rajn VS, Maines MD. Induction of heart heme oxygenase-1 (HSP32) by hyperthermia possible role in stress-mediated elevation of cyclic 3′∶5′-guanosine monophosphate. J Pharmacol Exp Ther 1994; 271:408–414.

    CAS  PubMed  Google Scholar 

  10. Prabhaker NR, Dinerman JL, Agani FH, Snyder SH. Carbon monoxide: a role in carotid body chemoreception. Proc Natl Acad Sci USA 1995;92:1994–1997.

    Article  Google Scholar 

  11. Johnson RA, Lavesa M, Askari B, Abraham NG, Nasjletti A. A heme oxygenase product, presumably carbon monoxide, mediates a vasodepressor function in rats. Hypertension 1995;25:166–169.

    Article  CAS  PubMed  Google Scholar 

  12. Abul-ezz SR, Walker PD, Shah SV. Role of glutathione in an animal model of myoglobinuric acute renal failure. Proc Natl Acad Sci USA 1991;88:9833–9837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maines MD. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J 1988;2:2557–2568.

    Article  CAS  PubMed  Google Scholar 

  14. Keyse SM, Tyrrell RM. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA-radiation, hydrogen peroxide and sodium arsenite. Proc Natl Acad Sci USA 1989;85:99–103.

    Article  Google Scholar 

  15. Tomaro ML, Frydman J, Frydman RB. Heme oxygenase induction by CoCl2, co-protoporphyrin IX, phenylhydrazine, and diamide: evidence for oxidative stress involvement. Arch Biochem Biophys 1991;286:610–617.

    Article  CAS  PubMed  Google Scholar 

  16. Heidemann HT, Müller S, Mertins L, Stepan G, Hoffmann K. Effect of aminophylline on cisplatin nephrotoxicity in the rat. Br J Pharmacol 1989;97:313–318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Meister A. Selective modification of glutathione metabolism. Science 1983;220:472–477.

    Article  CAS  PubMed  Google Scholar 

  18. Meister A. New developments in glutathione metabolism and their potential application in therapy. Hepatology 1984;4:739–742.

    Article  CAS  PubMed  Google Scholar 

  19. Meister A, Anderson ME, Hwang O. Intracellular cysteine and glutathione delivery systems. J Am Coll Nutr 1986;5:37–151.

    Article  Google Scholar 

  20. Olson CE. Glutathione modulates toxic oxygen metabolite injury of canine chief cell monolayers in primary culture. Am J Physiol 1988;254:G49-G56.

    CAS  PubMed  Google Scholar 

  21. Arrick BA, Nathan CF, Griffith OW, Cohn ZA. Glutathione depletion sensitizes tumor cells to oxidative cytolysis. J Biol Chem 1982;257:1231–1237.

    CAS  PubMed  Google Scholar 

  22. Hue DP, Griffith KL, McLean A. Hepatocytes in primary culture become susceptible to paracetamol injury after depletion of glutathione using DL-buthionine-SR-sulphoximine. Biochem Pharmacol 1985;34:4341–4344.

    Article  CAS  PubMed  Google Scholar 

  23. Andreoli SP, Mallett CP, Bergstein JM. Role of glutathione in protecting endothelial cells against hydrogen peroxide oxidant injury. J Lab Clin Med 1986; 108:190–198.

    CAS  PubMed  Google Scholar 

  24. Suttorp N, Toepfer W, Roka L. Antioxidant defense mechanisms of endothelial cells: glutathione redox cycle versus catalase. Am J Physiol 1986;251:5:C671–680.

    Article  CAS  PubMed  Google Scholar 

  25. Tietze F. Enzymic method for quantitative determination of nanogram amount of total and oxidized glutathione: application to mammalian blood and other tissues. Anal Biochem 1969;27:502–522.

    Article  CAS  PubMed  Google Scholar 

  26. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248–254.

    Article  CAS  PubMed  Google Scholar 

  27. Laemmli UK. Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature 1970;227:680–685.

    Article  CAS  PubMed  Google Scholar 

  28. Chomczynski P, Sacchi N. Single step method of RNA isolation by acid guanidinium thiocyanate phenol chloroform extraction. Anal Biochem 1987; 162:156–159.

    Article  CAS  PubMed  Google Scholar 

  29. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning. A Laboratory Manual. Cold Spring Harbor NY; Spring Harbor Laboratory, 1989.

    Google Scholar 

  30. Shibahara S, Muller R, Taniguchi H, Yoshida T. Cloning and expression of cDNA for rat heme oxygenase. Proc Natl Acad Sci USA 1985;82:7865–7869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ayer G, Grandchamp A, Wyler T, Truniger B. Intrarenal hemodynamics in glycerol induced myohemoglobinuric acute renal failure in the rat. Cir Res 1971;29:128–135.

    Article  CAS  Google Scholar 

  32. Gould J, Bowmer CG, Yates MS. Renal hemodynamic responses to adenosine in acute renal failure. Nephron 1995;71:184–189.

    Article  CAS  PubMed  Google Scholar 

  33. Franco M, Bell PD, Navar LG. Effect of adenosine A1 analogue on tubuloglomerular feedback mechanism. Am J Physiol 1989;257:F231-F236.

    CAS  PubMed  Google Scholar 

  34. Karam H, Bruneval P, Clozel JP, Liffler BM, Barity J, Clozel M. Role of endothelin in acute renal failure due to rhabdomyolysis in rats. J Pharm Exp Ther 1989; 274:481–486.

    Google Scholar 

  35. Agarwal A, Balla J, Alam J, Croatt A J, Nath KA. Induction of heme oxygenase in toxic renal injury: a protective role in cisplatin nephrotoxicity in the rat. Kidney Int 1995;48:1298–1307.

    Article  CAS  PubMed  Google Scholar 

  36. Guidet B, Shah SV. Enhanced in vivo H2O2 generation by rat kidney in glycerol-induced renal failure. Am J Physiol 1989;257:F440-F445.

    CAS  PubMed  Google Scholar 

  37. Meister A. Metabolism and function of glutathione: an overview. Biochem Soc Trans 1982;10:78–79.

    Article  CAS  PubMed  Google Scholar 

  38. Llesuy SF, Tomaro ML. Heme oxygenase and oxidative stress. Evidence of involvement of bilirubin as physiological protector against oxidative damage. Biochim Biophys Acta 1994;1223:9–14.

    Article  CAS  PubMed  Google Scholar 

  39. Christodoukides N, Durante W, Kroll MH, Schafer AI. Vascular smooth muscle cell heme oxygenases generate guanylyl cyclase stimulatory carbon monoxide. Cir Res 1995;91:2306–2309.

    Google Scholar 

  40. Maines MD, Trakshel GM, Kutty RK. Characterization of two constitutive forms of rat liver microsomal heme oxygenase. Only one molecular species of the enzyme is inducible. J Biol Chem 1986; 261:411–419.

    CAS  PubMed  Google Scholar 

  41. Keyse SM, Tyrrell RM. Both near ultraviolet radiation and the oxidizing agent hydrogen peroxide induce a 32-kDa stress protein in normal human skin fibroblast. J Biol Chem 1987;262:14821–14825.

    CAS  PubMed  Google Scholar 

  42. Nath KA, Vercellotti GM, Balla J, Jacob HS, Lavitt MD, Rosenberg ME. Induction of heme oxygenase is a rapid, protective response in rhabdomyolysis in the rat. J Clin Invest 1992;90:267–270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Linn JJ, Churchill PC, Bidni AK. Theophylline in rats during maintenance phase of post ischemic acute renal failure. Kidney Int 1988;33:24–28.

    Article  Google Scholar 

  44. Aoyagi K, Nagase S, Narita M, Tojo S. Role of active oxygen on methylguanidine synthesis in isolated rat hepatocytes. Kidney Int 1987;32(suppl 22):S229-S233.

    Google Scholar 

  45. Sardana MK, Sassa S, Kappas A. Hormonal regulation of heme oxygenase induction in avian hepatocyte culture. Biochem Pharmacol 1985;34:2937–2944.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Ishizuka, S., Nagashima, Y., Sone, M. et al. Theophylline protects against glycerol-induced acute renal failure: Regulation of heme oxygenase-1 and glutathione in rat kidney. Clin Exper Neph 1, 204–211 (1997). https://doi.org/10.1007/BF02480696

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02480696

Key words

Navigation