Skip to main content
Log in

An iterative method for algebraic equation by Padé approximation

Ein Iterationsverfahren zur Lösung einer Polynomgleichung mit Hilfe von Padé-Approximation

  • Published:
Computing Aims and scope Submit manuscript

Abstract

In this paper, we consider iterative formulae with high order of convergence to solve a polynomial equation,f(z)=0. First, we derive the numerator of the Padé approximant forf(z)/f′(z) by combining Viscovatov's and Euclidean algorithms, and then calculate the zeros of the numerator so as to apply one of the zeros for the next approximation. Regardless of whether the root is simple or multiple, the convergence order of this iterative formula is always attained for arbitrary positive integerm with the Taylor polynomial of degreem for a given polynomialf(z). Since it is easy to systematically obtain formulae of different order, we can choose formulae of suitable order according to the required accuracy.

Zusammenfassung

In dieser Arbeit betrachten wir Iterationsverfahren höherer Ordnung zur Lösung einer Polynomgleichungf(z)=0. Durch Anwendung der Verfahren von Viscovatov und Euclid erhalten wir eine Approximation für den Zähler der Padé-Approximierenden vonf(z)/f′(z), und verwenden eine der Wurzeln des Zählerpolynoms für die nächste Approximation. Dieses Verfahren hat die Ordnungm sowohl für einfache als auch mehrfache Wurzeln bei Verwendung des Taylor Polynomsm-ter Ordnung. Da es leicht ist, Verfahren verschiedener Ordnung zu erhalten, können wir gemäß der geforderten Genauigkeit eine passende Ordnung des Verfahrens wählen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tornheim, L.: Convergence of multipoint iterative methods. J. Assoc. Comput. Mach.11, 210–220 (1964).

    Google Scholar 

  2. Merz, G.: Padésche Näherungsbrüche und Iterationsverfahren höherer Ordnung. Computing3, 165–183 (1968).

    Google Scholar 

  3. Chisholm, J.: Approximation by sequences of Padé approximants in region of meromorphy. J. Math. Phys.7, 1, 39–44 (1966).

    Google Scholar 

  4. Nourein M.: Root determination by use of Padé approximants. BIT16, 291–297 (1976).

    Google Scholar 

  5. Claessens, G., Loizou, G., Wuytack, L.: Comments on a root finding method using Padé approximation. BIT17, 360–361 (1977).

    Google Scholar 

  6. Mills, W. H.: Continued fractions and linear recurrences. Math. Comp.29, 129, 173–180 (1975).

    Google Scholar 

  7. Murphy, J. A.: A class of algorithms for obtaining rational approximants to functions which are defined by power series. J. Appl. Math. Phys.28, 1121–1131 (1977).

    Google Scholar 

  8. Magnus, A.: Certain continued fractions associated with the Padé table. Math. Zeitschr.78, 361–374 (1962).

    Google Scholar 

  9. Baker, G., Graves-Morris, P.: Padé approximants I. London: Addison-Wesley 1981.

    Google Scholar 

  10. Cuyt, A., Wuytack, L.: Nonlinear methods in numerical analysis. Amsterdam: North-Holland 1987.

    Google Scholar 

  11. Bultheel, A.: Recursive algorithms for the Padé table: two approaches. In [21],, 211–230.

    Google Scholar 

  12. Householder, A.: The Padé table, the Frobenius identities, and the ad algorithm. Linear Algebra and Its Appl.4, 161–174 (1971).

    Google Scholar 

  13. Baker, G.: Recursive calculation of Padé approximants. In [21],, 83–92.

    Google Scholar 

  14. Pindor, M.: A simplified algorithm for calculating the Padé table derived from Baker and Longman schemes. J. Comp. Appl. Math.2, 4, 255–257 (1976).

    Google Scholar 

  15. Gragg, W.: The Padé table and its relation to certain algorithms of numerical analysis. SIAM Review14, 1–62 (1972).

    Google Scholar 

  16. Claessens, G.: A new look at the Padé table and the different methods for computing its elements. J. Comp. Appl. Math.1, 141–152 (1975).

    Google Scholar 

  17. Brezinski, C.: Computation of Padé approximants and continued fractions. J. Comp. Appl. Math.2, 113–123 (1976).

    Google Scholar 

  18. Graves-Morris, P.: The numerical calculation of Padé approximants, In [22],, 231–245.

    Google Scholar 

  19. Baker, G.: Essentials of Padé approximants. New York: Academic Press 1975.

    Google Scholar 

  20. McEliece, R., Shearer, J.: A property of Euclid's algorithm and an application to Padé approximation. SIAM J. Appl. Math.34, 4, 611–615 (1978).

    Google Scholar 

  21. Graves-Morris, P.: Padé approximants and their applications, Proc. Univ. Kent. Berlin: Springer 1972.

    Google Scholar 

  22. Wuytack, L.: Padé approximation and its applications, Proc. Antwerp. Berlin: Springer 1979.

    Google Scholar 

  23. Pomentale, T.: A class of iterative method for holomorphic functions. Numer Math.18, 193–203 (1971).

    Google Scholar 

  24. Sakurai, T., Torii, T., Sugiura, H.: An electrostatic interpretation iterative method for finding roots of polynomial. Trans. Inf. Process. Soc.29, 5, 447–455 (1988) (Japanese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakurai, T., Torii, T. & Sugiura, H. An iterative method for algebraic equation by Padé approximation. Computing 46, 131–141 (1991). https://doi.org/10.1007/BF02239167

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02239167

AMS Subject Classifications

Key words

Navigation