Skip to main content
Log in

A proposal of moist turbulence closure scheme, and the rationalization of Arakawa-Schubert cumulus parameterization

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

Subgrid-scale parameterization related to moist process are discussed. In the first half of the paper, a turbulence closure scheme, including the effect of condensation, is proposed. In this parameterization, the subgrid-scale transfer is limited within a single vertical layer of a model per each time step, and the specification of condensation is of yes-or-no type. Therefore, the scheme is suited for a mesoscale circulation model.

In the second half of this paper, the bounded derivative method of Kreiss (1980) is applied to the formulation of parameterizations. One example is the derivation of various hierarchial versions in turbulence closure schemes, such as Mellor and Yamada (1974). Another example is an interpretation of the key assumption in Arakawa-Schubert (1974) theory of cumulus convection, i.e., the equilibrium of “cloud-work function”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthes, R. A., 1977: A cumulus parameterization scheme utilizing a one-dimensional cloud model.Mon. Wea. Rev.,105, 270–286.

    Google Scholar 

  • Arakawa, A., Schubert, W., 1974: Interaction of a cumulus cloud ensemble with the large-scale environment.J. Atmos. Sci.,31, 674–701.

    Google Scholar 

  • Asai, T., Kasahara, A., 1967: A theoretical study of the compensating downward motions associated with cumulus clouds.J. Atmos. Sci.,24, 487–492.

    Google Scholar 

  • Betts, A. K., 1974: Thermodynamic classification of tropical convective soundings.Mon. Wea. Rev.,102, 760–764.

    Google Scholar 

  • Browning, G., Kasahara, A., Kreiss, H.-O., 1980: Initialization of the primitive equations by the bounded derivative method.J Atmos. Sci.,37, 1424–1436.

    Google Scholar 

  • Chen, W. Y., 1974: Energy dissipation rates of free atmospheric turbulence.J. Atmos. Sci.,31, 2222–2225.

    Google Scholar 

  • Clark, R. A., Ferziger, J. H., Reynolds, W. C., 1979: Evaluation of subgrid scale models using an accurately simulated turbulent flow.J. Fluid Mech.,91, Part 2, 1–16.

    Google Scholar 

  • Cotton, W. R., 1975: Theoretical cumulus dynamics.Rev. Geophys. Space Phys.,13, 419–448.

    Google Scholar 

  • Deardorff, J. W., 1972: Numerical investigation of neutral and unstable planetary boundary layers.J. Atmos. Sci.,29, 91–115.

    Google Scholar 

  • Deardorff, J. W., 1973: Three-dimensional numerical modelling of the planetary boundary layer.Workshop on Micrometeorology, D. A. Haugen, Ed., Amer. Meteor. Soc., 271–311.

  • Houze, R. A., Betts, A. K., 1981: Convection in GATE.Review Geophys. Space Phys.,19, 541–576.

    Google Scholar 

  • Kasahara, A., 1982: Nonlinear normal mode initialization and the bounded derivative method.Review Geophys. Space Phys.,20, 385–397.

    Google Scholar 

  • Kreiss, H.-O., 1980: Problems with different time scales for partial differential equations.Comm. Pure Appl. Math.,33, 399–439.

    Google Scholar 

  • Kuo, H. L., 1962: On the controlling influences of eddy diffusion on thermal convection.J. Atmos. Sci.,19, 236–243.

    Google Scholar 

  • Leary, C. A., Houze, R. A., 1979: The structure and evolution of convection in a tropical cloud cluster.J. Atmos. Sci.,36, 437–457.

    Google Scholar 

  • Leonard, A., 1973: On the energy cascade in large-eddy simulations of turbulent flows.Adv. in Geophys.,A18, 237.

    Google Scholar 

  • Levine, J., 1959: Spherical vortex theory of bubble-like motion in cumulus clouds.J. Meteor. 16, 653–662.

    Google Scholar 

  • Lipps, F. B., 1977: A study of turbulence parameterization in a cloud model.J. Atmos. Sci.,34, 1751–1772.

    Google Scholar 

  • Lipps, F. B., Hemler, R., 1982: A scale analysis of deep moist convection and some related numerical calculations.J. Atmos. Sci.,39, 2192–2210.

    Google Scholar 

  • López, R. E., 1976: Radar characteristics of the cloud populations of tropical disturbances in the Northwest Atlantic.Mon. Wea. Rev.,104, 268–283.

    Google Scholar 

  • Lord, S. J., Arakawa, A., 1980: Interaction of a cumulus cloud ensemble with the large-scale environment. Part II.J. Atmos. Sci.,37, 2677–2692.

    Google Scholar 

  • Lord, S. J., Chao, W. C., Arakawa, A., 1982: Interaction of a cumulus cloud ensemble with the large-scale environment. Part IV. The discrete model.J. Atmos. Sci.,39, 104–113.

    Google Scholar 

  • Malkus, J. S., 1960: Recent developments in studies of penetrative convetion and an application to hurricane, cumulonimbus towers, cumulus dynamics. In:Cumulus Dynamics, ed. Anderson, New York: Pergamon Press, 65–85.

    Google Scholar 

  • Mellor, G. L., Yamada, T., 1974: A hierarchy of turbulence closure models for planetary boundary layers.J. Atmos. Sci.,31, 1791–1806.

    Google Scholar 

  • Mellor, G. L., 1977: The Gaussian cloud model relations.J. Atmos. Sci.,34, 356–358.

    Google Scholar 

  • Mellor, G. L., Yamada, T., 1982: Development of a turbulent closure model for geophysical fluid problems.Review Geophys. Space Phys.,20, 851–875.

    Google Scholar 

  • Miyakoda, K., 1956: Forecasting formula of precipitation and the problem of conveyance of water vapor.J. Meteor. Soc. Japan,34, 212–225.

    Google Scholar 

  • Miyakoda, K., Sirutis, J., 1977: Comparative integrations of global models with various parameterized processes of subgrid-scale vertical transports.Beitr. Phys. Atmos.,50, 445–487.

    Google Scholar 

  • Morton, B. R., Taylor, G. I., Turner, J. S., 1956: Turbulent gravitational convection from maintained and instantaneous sources.Proc. Roy. Soc. London A,234, 1–23.

    Google Scholar 

  • Orlanski, I., 1981: The quasi-hydrostatic approximation.J. Atmos. Sci.,38, 572–582.

    Google Scholar 

  • Ogura, Y., Phillips, N. A., 1962: A scale analysis of deep and shallow convection in the atmosphere.J. Atmos. Sci.,19, 173–179.

    Google Scholar 

  • Ogura, Y., Cho, H. R., 1973: Diagnostic determination of cumulus cloud populations from observed large-scale variables.J. Atmos. Sci.,30, 1276–1286.

    Google Scholar 

  • Ooyama, K. V., 1982: Conceptual evolution of the theory and modeling of the tropical cyclone.J. Meteor. Soc. Japan,60, 369–380.

    Google Scholar 

  • Ooyama, K., 1971: A theory on parameterization of cumulus convection.J. Meteor. Soc. Japan.,39 (special issue), 744–756.

    Google Scholar 

  • Orville, H. D., 1965: A numerical study of the initiation of cumulus clouds over mountainous terrain.J. Atmos. Sci.,22, 684–699.

    Google Scholar 

  • Priestley, C. H. B., 1959:Turbulent Transfer in the Lower Atmosphere, Chicago: The University of Chicago Press, 130 pp.

    Google Scholar 

  • Semazzi, F. H. M., 1983: On the bounded derivative initialization method. Ph.D. Thesis. University of Nairobi, Kenya.

    Google Scholar 

  • Simpson, J., 1971: On cumulus entrainment and one-dimensional models.J. Atmos. Sci.,28, 449–455.

    Google Scholar 

  • Simpson, J., Wiggert, V., 1969: Models of precipitating cumulus towers.Mon. Wea. Rev.,97, 471–489.

    Google Scholar 

  • Smagorinsky, J., Collins, C. O., 1955: On the numerical prediction of precipitation.Mon. Wea. Rev.,83, 53–68.

    Google Scholar 

  • Sommeria, G., Deardorff, J. W., 1977: Subgrid-scale condensation in models of nonprecipitating clouds.J. Atmos. Sci.,34, 344–355.

    Google Scholar 

  • Squires, P., 1982: The growth of cloud drops by condensation. I. General characteristics.Aust. J. Sci. Res.,A5, 59–86.

    Google Scholar 

  • Yamada, T., Mellor, G. L., 1975: A simulation of the Wangara atmospheric boundary layer data.J. Atmos. Sci.,32, 2309–2329.

    Google Scholar 

  • Yamasaki, M., 1977: A preliminary experiment of the tropical cyclone without parameterizing the effects of cumulus convection.J. Meteor. Soc. Japan.55, 11–31.

    Google Scholar 

  • Yanai, M., Esbensen, S., Chu, J.-H., 1973: Determination of bulk properties of tropical cloud clusters from large scale heat and moisture budgets.J. Atmos. Sci.,30, 611–627.

    Google Scholar 

  • Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line circulation.Mon. Wea. Rev.,105, 1568–1589.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 2 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyakoda, K., Sirutis, J. A proposal of moist turbulence closure scheme, and the rationalization of Arakawa-Schubert cumulus parameterization. Meteorl. Atmos. Phys. 40, 110–122 (1989). https://doi.org/10.1007/BF01027470

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01027470

Keywords

Navigation