Skip to main content
Log in

Finite element investigation of the problem of large strains, formulated in terms of true stress and logarithmic strain

Finite Elemente Untersuchung des Problems großer Verzerrungen, formuliert mittels wahrer Spannungen und logarithmischer Verzerrungen

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

A finite element investigation of the problem of large strains, formulated in terms of true stress and logarithmic strain, is presented. Large displacements as well as material nonlinearity are incorporated in the formulation. The concept of true stress and logarithmic strain, originally defined for a uniaxial state of stress, is applied to the formulation of the problem. Tetrahedra with linear variations of displacements are employed as finite elements. Two incremental solution procedures — the initial load approach and the tangential stiffness approach — are discussed. The proposed concept is applied to the elastoplastic problem of the uniaxial stretching and shortening of a rectangular plate under the plane state of stress.

Zusammenfassung

In diesem Aufsatz wird das Problem großer Verzerrungen, formuliert mittels wahrer Spannungen und logarithmischer Verzerrungen, mit Hilfe der Methode der Finiten Elemente untersucht. In der Formulierung werden sowohl große Verschiebungen als auch physikalische Nichtlinearität berücksichtigt. Das Konzept der wahren Spannungen und logarithmischen Verzerrungen, das ursprünglich für den eindimensionalen Spannungszustand entwickelt worden ist, wird auf die Formulierung der Probleme angewendet. Als Finite Elemente gelangen Tetraeder zum Einsatz. Lineare Verschiebungsansätze werden gewählt. Zwei verschiedene inkrementelle Lösungsverfahren — die Methode der Anfangslasten sowie das Tangentensteifigkeitsverfahren — werden diskutiert. Das vorgeschlagene Konzept wird auf das elastoplastische Problem der eindimensionalen Ausdehnung und Verkürzung von einer rechteckigen Platte im ebenen Spannungszustand angewendet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Argyris, J. H.: Continua and discontinua, Proc. 1st. intl. conf. matrix methods of structural analysis. Dayton, Ohio, Oct. 26, 1965, ASME, pp. 1–198 (1967).

  2. Zienkiewicz, O. C.: The finite element method in engineering science. London: McGraw-Hill. 1971.

    Google Scholar 

  3. Oden, J. T.: Finite elements of nonlinear continua. New York: McGraw-Hill. 1971.

    Google Scholar 

  4. Hibbitt, H. D., Marcal, P. V., Rice, J. R.: A finite element formulation for problems of large strain and large displacement. Intl. Jour. Solids and Structures6, 1069–1086 (1970).

    Google Scholar 

  5. Osias, J. R., Swedlow, J. L.: Finite elasto-plastic deformation — I; Theory and numerical examples. Intl. Jour. Solids and Structures10, 321–339 (1974).

    Google Scholar 

  6. McMeeking, R. M., Rice, J. R.: Finite-element formulations for problems of large elasticplastic deformation. Intl. Jour. Solids and Structures11, 601–616 (1975).

    Google Scholar 

  7. Argyris, J. H., Tanaka, M.: Finite element analysis of large strains and large displacements by natural factor displacement method (Formulation for elastoplasticity). Bulletin of the JSME22, 801–808 (1979).

    Google Scholar 

  8. Argyris, J. H.: Three-dimensional anisotropic and inhomogeneous elastic media, matrix analysis for small and large displacements. Ingenieur-Archiv34, 33–55 (1965).

    Google Scholar 

  9. Hofmeister, L. D., Greenbaum, G. A., Evensen, D. A.: Large strain, elasto-plastic finite element analysis. AIAA Jour.9, 1248–1254 (1971).

    Google Scholar 

  10. Balmer, H. A., Doltsinis, J. St.: ASKA Part III 1 — Material nonlinearities, ISD-Report, Univ. Stuttgart, No. 132 (1972).

  11. Argyris, J. H., Dunne, P. C.: Some contributions to non-linear solid mechanics. Proc. Colloque IRIA, Versailles, Dec. 1973, pp. 1–146. Berlin-Heidelberg-New York: Springer. 1974.

    Google Scholar 

  12. Hamada, M., Tanaka, M.: A numerical method considering the Bauschinger effect for large deflection Analysis of elastic-plastic circular plates. Bulletin of the JSME15, 1029–1040 (1972).

    Google Scholar 

  13. Tanaka, M.: Large deflection analysis of elastic-plastic circular plates with combined isotropic and kinematic hardening. Ingenieur-Archiv41, 342–356 (1972).

    Google Scholar 

  14. Tanaka, M., Miyagawa, Y.: On generalized kinematic hardening theory of plasticity. Ingenieur-Archiv44, 255–268 (1975).

    Google Scholar 

  15. Marcal, P. V., King, I. P.: Elastic-Plastic analysis of two-dimensional stress systems by the finite element method. Intl. Jour. Mech. Sci.9, 143–155 (1967).

    Google Scholar 

  16. Yamada, Y., Yoshimula, Y., Sakurai, T.: Plastic stress-strain matrix and its application for the solution of elastic-plastic problems by the finite element method. Intl. Jour. Mech. Sci.10, 343–354 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor John H. Argyris in honour of his 65th birthday.

With 5 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, M. Finite element investigation of the problem of large strains, formulated in terms of true stress and logarithmic strain. Acta Mechanica 34, 129–141 (1979). https://doi.org/10.1007/BF01176262

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01176262

Keywords

Navigation