Skip to main content
Log in

Computer simulated deformation of compact granular assemblies

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The paper is concerned with the mechanics of granular material under quasi-equilibrium conditions. The characterisation of the microstructure of granular material is discussed and the relationship between the microstructure and the stress tensor is examined.

Results from computer simulated experiments on a large, initially random, dense assembly of different sized discs are used to investigate the evolution of both stress and structure. Two tests are reported: one a constant mean stress test and the other a constant volume test. It is shown that, although the two tests were subjected to different strain histories the degree of induced structural anisotropy evolved in an identical manner.

The computer simulated tests show that there also exists a statical anisotropy due to the biased distribution of contact forces within an assembly. This also evolves in the same way for both tests reported. Consequently, the evolution of the angle of internal shearing resistance with strain is found to be unique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cundall, P. A., Strack, O. D. L.: A discrete numerical model for granular assemblies. Geotechnique29, 47–65 (1979).

    Google Scholar 

  2. Oda, M., Konishi, J.: Microscopic deformation mechanism of granular material in simple shear. Soils and Foundations14, 25–38 (1974).

    Google Scholar 

  3. Oda, M., Nemat-Nasser, S., Mehrabadi, M. M.: A statistical study of fabric in a random assembly of spherical granules. Int. J. Anal. Methods in Geomech.6, 77–94 (1982).

    Google Scholar 

  4. Satake, M.: Fabric tensor in granular materials. Proc. IUTAM Symp. on Deformation and Failure of Granular Materials, Delft, Balkema, pp. 63–68, 1982.

  5. Leckie, F. A., Onat, E. T.: Tensorial nature of damage measuring internal variables. Proc. IUTAM Symp. on Physical Non-linearities in Structural Analysis, Senlis, 140–155, 1981.

  6. Onat, E. T.: Representation of inelastic behaviour in the presence of anisotropy and finite deformations, in: Plasticity of metals at finite strains: Theory, experiment & computation (eds., Lee, E. H., Mallett, R. L.), Rensselaer Poly. Inst., pp. 519–543, 1982.

  7. Barnes, D. J.: A study of the micro-mechanics of granular material. Ph. D. thesis Aston University, 1985.

  8. Thornton, C., Barnes, D. J.: On the mechanics of granular material. Proc. IUTAM Symp. on Deformation and Failure of Granular Materials, Delft, Balkema, pp. 69–77, 1982.

  9. Cundall, P. A., Drescher, A., Strack, O. D. L.: Numerical experiments on granular assemblies: measurements and observations. Proc. IUTAM Symp. on Deformation and Failure of Granular Materials, Delft, Balkema, pp. 355–370, 1982.

  10. Cambou, B.: Orientation distributions of contact forces as memory parameters in a granular material. Proc. IUTAM Symp. on Deformation and Failure of Granular Materials, Delft, Balkema, pp. 3–12, 1982.

  11. Drescher, A., de Josselin de Jong, G.: Photoelastic verification of a mechanical model for the flow of a granular material. J. Mech. Phys. Solids20, 337–351 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 9 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thornton, C., Barnes, D.J. Computer simulated deformation of compact granular assemblies. Acta Mechanica 64, 45–61 (1986). https://doi.org/10.1007/BF01180097

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01180097

Keywords

Navigation