Skip to main content
Log in

Dynamics of the cytoskeleton inAmoeba proteus: II. Influence of different agents on the spatial organization of microinjected fluorescein-labeled actin

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Iodoacetamido-fluorescein-(IAF)-labeled actin was microinjected into normal locomotingAmoeba proteus. Thereafter (30–60 minutes) changes in the cytoplasmic fluorescence distribution pattern and contractile activity were induced by internal and external chemical stimulation. Different agents such as phalloidin, procaine, 2.4-dinitrophenol (DNP), puromycin, ouabain and n-ethyl maleimide (NEM) interfere with the excitation-contraction mechanism involved in ordered pseudopodium formation during ameboid movement and cause various morphogenetic reactions based on actin polymerization-depolymerization cycles. Most frequent changes are (a) local condensation of IAF-actin and formation of a continuous IAF-actin layer at the cytoplasmic surface of the cell membrane and around the pulsating vacuole, (b) immobilization and hyalo-granuloplasm separation by combined contraction and detachment of the IAF-actin layer from the cell membrane, (c) organized and disorganized formation of pseudopodia by local contraction and disintegration of the IAF-actin layer, and (d) alterations in the rheological properties of the protoplasmic matrix by changes in the molecular state of soluble actin not incorporated into the cytoskeleton. The experimental approaches to the function of the actomyosin system in large amebas attainable by the method ofin vivo molecular cytochemistry are discussed in detail with respect to the participation of the cytoskeleton in motive force generation for cytoplasmic streaming and ameboid movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Carrol, R. C., Butler, R. G., Morris, P. A., Gerrard, J. A., 1982: Separable assembly of platelet pseudopodal and contractile cytoskeletons. Cell30, 385–393.

    PubMed  Google Scholar 

  • Chen, J. C. W., Kamiya, N., 1975: Localization of myosin in the internodal cell ofNitella as suggested by differential treatment with N-Ethylmaleimide. Cell Struc. Func.1, 1–9.

    Google Scholar 

  • Comly, L. T., 1973: Microfilaments inChaos carolinensis: membrane association, distribution and heavy meromyosin binding in the glycerinated cell. J. Cell Biol.58, 230–237.

    Google Scholar 

  • Dunn, M. J., Owen, E., Kemp, R. B., 1970: Studies on the mechanism underlying the inhibition by puromycin of cell aggregationin vitro. J. Cell Sci.7, 557–573.

    PubMed  Google Scholar 

  • Feramisco, J. R., 1979: Microinjection of fluorescently labeled α- actinin into living fibroblasts. Proc. Natl. Acad. Sci. U.S.A.76, 3967–3971.

    PubMed  Google Scholar 

  • Gawlitta, W., Hinssen, H., Stockem, W., 1980 a: The influence of an actin-modulating protein (AM-protein) fromPhysarum polycephalum on the cell motility ofAmoeba proteus. Eur. J. Cell Biol.23, 43–52.

    PubMed  Google Scholar 

  • —,Stockem, W., Weber, K., 1981: Visualization of actin polymerization and depolymerization cycles during polyamine-induced cytokinesis in livingAmoeba proteus. Cell Tiss. Res.215, 249–261.

    Google Scholar 

  • — —,Wehland, J., Weber, K., 1980b: Organization and spatial arrangement of fluorescein-labeled native actin microinjected into normal locomoting and experimentally influencedAmoeba proteus. Cell Tiss. Res.206, 181–191.

    Google Scholar 

  • Grebecka, L., Hrebenda, B., 1979: Topography of cortical layer inAmoeba proteus as related to the dynamic morphology of moving cell. Acta Protozool.18, 481–490.

    Google Scholar 

  • Grebecki, A., 1980: Behaviour ofAmoeba proteus exposed to lightshade difference. Protistologica16, 103–113.

    Google Scholar 

  • —, 1981: Effects of localized photic stimulation on amoeboid movement and their theoretical implications. Eur. J. Cell Biol.24, 163–175.

    PubMed  Google Scholar 

  • —, 1982: Supramolecular aspects of amoeboid movement. Progr. in Protozool.; Proc. VI Internatl. Congr. Protozool. Vol.1, 117–130.

    Google Scholar 

  • Hauser, M., 1978: Demonstration of membrane-associated and oriented microfilaments inAmoeba proteus by means of a Schiff base/glutaraldehyde fixative. Cytobiologie18, 95–106.

    PubMed  Google Scholar 

  • Hellewell, S. B., Taylor, D. L. 1979: The contractile basis of ameboid movement. VI. The solation-contraction coupling hypothesis. J. Cell Biol.83, 633–648.

    Google Scholar 

  • Hoffmann, H.-U.,Gawlitta, W.,Stockem, W., in preparation: Reaction ofAmoeba proteus to external and internal chemical stimulation.

  • Imaizumi, Y., Watanabe, M., 1982: Effect of procaine on potassium permeability of canine tracheal smooth muscle. Pflügers Arch.394, 144–149.

    Google Scholar 

  • Keith, C. H., Feramisco, J. R., Shelanski, M., 1981: Direct visualization of fluorescein-labeled microtubulesin vitro and in microinjected fibroblasts. J. Cell Biol.88, 234–240.

    PubMed  Google Scholar 

  • Kreis, T. E., Birchmeier, W., 1980: Stress fiber sarcomeres of fibroblasts are contractile. Cell22, 555–561.

    PubMed  Google Scholar 

  • — —, 1982: Microinjection of fluorescently labeled proteins into living cells with emphasis on cytoskeletal proteins. Int. Rev. Cytol.75, 209–227.

    PubMed  Google Scholar 

  • —,Winterhalter, K. H., Birchmeyer, W., 1979:In vivo distribution and turnover of fluorescently labeled actin microinjected into human fibroblasts. Proc. Natl. Acad. Sci. U.S.A.76, 3814–3818.

    PubMed  Google Scholar 

  • Komnick, H., Wohlfarth-Bottermann, K. E., 1965: Das Grundplasma und die Plasmafilamente der AmoebeChaos chaos nach enzymatischer Behandlung der Zellmembran. Z. Zellforsch.66, 434–456.

    PubMed  Google Scholar 

  • Korohoda, W., Stockem, W., 1975: On the nature of hyaline zones in the cytoplasm ofAmoeba proteus. Microsc. Acta77, 129–141.

    PubMed  Google Scholar 

  • Low, P. S., Lloyd, D. H., Stein, T. M., Rogers III,J. A., 1979: Calcium displacement by local anesthetics. Dependence on pH and anesthetic charge. J. biol. Chem.254, 4119–4125.

    PubMed  Google Scholar 

  • Mast, S. O., 1926: Structure, movement, locomotion and stimulation in amoeba. J. Morphol.41, 347–425.

    Google Scholar 

  • Nachmias, V. T., 1964: Fibrillar structures in the cytoplasm ofChaos chaos. J. Cell Biol.23, 183–188.

    Google Scholar 

  • —, 1968: Further electron microscope studies on fibrillar organization of the ground cytoplasm ofChaos chaos. J. Cell Biol.38, 40–52.

    Google Scholar 

  • Pollard, T. D., Ito, S., 1970: Cytoplasmic filaments inAmoeba proteus. I. The role of filaments in consistancy changes and movement. J. Cell Biol.46, 267–289.

    Google Scholar 

  • —,Korn, E. D., 1973: Electron microscopic identification of actin associated with isolated amoeba plasma membrane. J. biol. Chem.248, 448–450.

    PubMed  Google Scholar 

  • Rinaldi R. A., 1964: The plasmagel sheet ofAmoeba proteus. Protoplasma59, 480–484.

    Google Scholar 

  • —,Hrebenda, B., 1975: Oriented thick and thin filaments inAmoeba proteus. J. Cell Biol.66, 193–198.

    PubMed  Google Scholar 

  • Sanders, E. J., Bell, L. G. E., 1970: Inhibition of pinocytosis inAmoeba proteus by puromycin. Exp. Cell Res.63, 379–384.

    PubMed  Google Scholar 

  • Satoh, H., Ueda, T., Kobatake, Y., 1982: Primary oscillator of contractional rhythm in the plasmodium ofPhysarum polycephalum: role of mitochondria. Cell Struc. Func.7, 275–283.

    Google Scholar 

  • Schatzmann, J. J., 1953: Herzglykoside als Hemmstoffe für den aktiven Kalium- und Natriumtransport durch die Erythrocyten-membran. Helv. Physiol. Pharmacol. Acta41, 346–354.

    Google Scholar 

  • SchÄfer-Danneel, S., 1967: Strukturelle und funktionelle Voraussetzung für die Bewegung vonAmoeba proteus. Z. Zellforsch.78, 441–462.

    PubMed  Google Scholar 

  • Smith, R. A., Ord, M. J., 1979: Morphological alterations in the mitochondria ofAmoeba proteus induced by uncoupling agents. J. Cell Sci.37, 217–229.

    PubMed  Google Scholar 

  • Stacey, D. W., Allfrey, V. G., 1977: Evidence for the autophagy of microinjected proteins in Hela cells. J. Cell Biol.75, 807–817.

    PubMed  Google Scholar 

  • Stockem, W.,Hoffmann, H.-U.,Gawlitta, W., 1981: Funktionell-morphologische Grundlagen der amoeboiden Bewegung. Verh. dtsch. zool. Ges. 71–84.

  • — — —, 1982: Spatial organization and fine structure of the cortical filament layer in normal locomotingAmoeba proteus. Cell Tiss. Res.221, 505–519.

    Google Scholar 

  • — —,Gruber, B., 1983a: Dynamics of the cytoskeleton inAmoeba proteus: I. Redistribution of microinjected fluoresceinlabeled actin during locomotion, immobilization and phagocytosis. Cell Tiss. Res.232, 79–96.

    Google Scholar 

  • —,Weber, K., Wehland, J., 1978: The influence of microinjected phalloidin on locomotion, protoplasmic streaming and cytoplasmic organization inAmoeba proteus andPhysarum polycephalum. Cytobiologie18, 114–131.

    PubMed  Google Scholar 

  • —,Naib-Majani, W., Wohlfarth-Bottermann, K. E., Osborn, M., Weber, K., 1983 b: Pinocytosis and locomotion of amoebae. XIX. Immunocytochemical demonstration of actin and myosin inAmoeba proteus. Eur. J. Cell Biol.29, 171–178.

    PubMed  Google Scholar 

  • Taylor, D. L., Condeelis, J. S., 1979: Cytoplasmic structure and contractility in amoeboid cells. Int. Rev. Cytol.56, 57–144.

    PubMed  Google Scholar 

  • —,Wang, Y. L., 1978: Molecular cytochemistry: Incorporation of fluorescently labeled actin into living cells. Proc. Natl. Acad. Sci. U.S.A.75, 857–861.

    PubMed  Google Scholar 

  • — —,Heiple, J. M., 1980: Contractile basis of ameboid movement VII. The distribution of fluorescently labeled actin in living amebas. J. Cell Biol.86, 590–598.

    Google Scholar 

  • Wang, Y., Lanni, F., McNeil, P. L., Ware, B. R., Taylor, D. L., 1982: Mobility of cytoplasmic and membrane-associated actin in living cells. Proc. Natl. Acad. Sci. U.S.A.79, 4660–4664.

    PubMed  Google Scholar 

  • Wehland, J., Weber, K., 1980: Distribution of fluorescently labeled actin and tropomyosin after microinjection in living tissue culture cells as observed with TV image intensification. Exp. Cell Res.127, 397–408.

    PubMed  Google Scholar 

  • —,Osborn, M., Weber, K., 1977: Phalloidin-induced actin polymerization in the cytoplasm of cultured cells interferes with cell locomotion and growth. Proc. Natl. Acad. Sci. U.S.A.74, 5613–5617.

    PubMed  Google Scholar 

  • —,Stockem, W., Weber, K., 1978: Cytoplasmic streaming inAmoeba proteus is inhibited by the actin specific drug phalloidin. Exp. Cell Res.115, 451–454.

    PubMed  Google Scholar 

  • —,Weber, K., Gawlitta, W., Stockem, W., 1979: Effects of the actin-binding protein DNAase I on cytoplasmic streaming and ultrastructure ofAmoeba proteus. Cell Tiss. Res.199, 353–372.

    Google Scholar 

  • Wieland, T., 1977: Modification of actins by phallotoxins. Natur-wissenschaften64, 303–309.

    Google Scholar 

  • Wolniak, S. M., Hepler, P. K., Jackson, W. T., 1980: Detection of the membrane-calcium distribution during mitosis inHaemanthus endosperm with Chlorotetracycline. J. Cell Biol.87, 23–32.

    Google Scholar 

  • Zavortnik, M., Thacher, T., Rechsteiner, M., 1979: Degradation of proteins microinjected into cultured mammalian cells. J. Cell Physiol.100, 175–186.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, H.U., Stockem, W. & Gruber, B. Dynamics of the cytoskeleton inAmoeba proteus: II. Influence of different agents on the spatial organization of microinjected fluorescein-labeled actin. Protoplasma 119, 79–92 (1984). https://doi.org/10.1007/BF01287820

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01287820

Keywords

Navigation