Skip to main content
Log in

Structure of Golgi apparatus

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Golgi apparatus (GA) of eukaryotic cells consist of one or more stacks of flattened saccules (cisternae) and an array of fenestrae and tubules continuous with the peripheral edges of the saccules. Golgi apparatus also are characterized by zones of exclusion that surround each stack and by an assortment of vesicles (or vesicle buds) associated with both the stacks and the peripheral tubules of the stack cisternae. Each stack (sometimes referred to as Golgi apparatus, Golgi complex, or dictyosome) is structurally and functionally polarized, reflecting its role as an intermediate between the endoplasmic reticulum, the cell surface, and the lysosomal system of the cell. There is probably only one GA per cell, and all stacks of the GA appear to function synchronously. All Golgi apparatus are involved in the generation and movement of product and membrane within the cell or to the cell exterior, and these functions are often reflected as structural changes across the stacks. For example, in plants, both product and membrane appear to maturate from the cis to the trans poles of the stacks in a sequential, or serial, manner. However, there is also strong ultrastructural evidence in plants for a parallel input to the stack saccules, probably through the peripheral tubules. The same modes of functioning probably also occur in animal GA; although here, the parallel mode of functioning almost surely predominates. In some cells at least, GA stacks give rise to tubular-vesicular structures that resemble the trans Golgi network. Rudimentary GA, consisting of tubular-vesicular networks, have been identified in fungi and may represent an early stage of GA evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beams HW, Kessel RG (1968) The Golgi apparatus. Int Rev Cytol 23: 209–276

    PubMed  Google Scholar 

  • Bong YY, Chrispeels ML (1980) The origin of protein bodies in developing soybean cotyledons: a proposal. Protoplasma 103: 201–204

    Google Scholar 

  • Bourne GH (1964) Mitochondria and the Golgi complex. In: Bourne GH (ed) Cytology and cell physiology. Academic Press, New York, pp 377–421

    Google Scholar 

  • Bowen RH (1926) The Golgi apparatus — its structure and functional significance. Anat Rec 32: 151–193

    Google Scholar 

  • Bracker CE (1967) Ultrastructure of fungi. Annu Rev Phytopathol 5: 343–643

    Google Scholar 

  • Brown MR Jr (1969) Observations on the relationship of the Golgi apparatus to wall formation in the marine chrysophycean algaPleurochrysis scherffelii Pringsheim. J Cell Biol 41: 109–123

    PubMed  Google Scholar 

  • Chrispeels MJ (1983) The Golgi apparatus mediates the transport of phytohemagglutinin to the protein bodies in bean cotyledons. Planta 158: 140–151

    Google Scholar 

  • — (1984) Biosynthesis, processing and transport of storage proteins and lectins in cotyledons of developing legume seeds. Philos Trans R Soc Lond [Biol] 304: 309–322

    Google Scholar 

  • — (1985) The role of the Golgi apparatus in the transport and post translational modification of vacuolar (protein body) proteins. In: Mieflin B (ed) Oxford surveys of plant molecular and cell biology, vol 2. Oxford University Press, Oxford, pp 43–68

    Google Scholar 

  • Craig S, Goodchild DJ, Hardham AR (1979) Structural aspects of protein accumulation in developing pea cotyledons. I. Qualitative and quantitative changes in parenchyma cell vacuoles. Aust J Plant Physiol 6: 81–98

    Google Scholar 

  • Cunningham WP, Morré DJ, Mollenhauer HH (1966) Structure of isolated plant Golgi apparatus revealed by negative staining. J Cell Biol 28: 169–179

    PubMed  Google Scholar 

  • Dalton AJ, Felix MD (1956) A comparative study of the Golgi complex. J Biophys Biochem Cytol 2: 79–84

    PubMed  Google Scholar 

  • Farvard P, Ovtracht L, Carasso N (1971) Observations de spécimens biologiques en microscopie électronique a haute tension. I. Coupes épaisses. J Microscopie 12: 301–316

    Google Scholar 

  • Geuze HJ, Slot JW, Strous GJAM, Lodish HF, Schwartz AL (1983) Intracellular site of asialoglycoprotein receptor-ligand uncoupling: double-label immunoelectron microscopy during receptormediated endocytosis. Cell 32: 277–287

    PubMed  Google Scholar 

  • — — —, Hasilik A, Von Figura K (1985) Possible pathways for lysosomal enzyme delivery. J Cell Biol 101: 2253–2262

    PubMed  Google Scholar 

  • Golgi C (1898) Sur la structure des cellules nerveuses. Arch Ital Biol 30: 60–71

    Google Scholar 

  • Griffing LR (1991) Comparisons of Golgi apparatus structure and dynamics in plant and animal cells. J Electron Microsc Tech 17: 179–199

    PubMed  Google Scholar 

  • Griffiths G, Simons K (1986) Thetrans Golgi network: sorting at the exit site of the Golgi complex. Science 234: 438–443

    PubMed  Google Scholar 

  • Grove SN, Bracker CE, Morré DJ (1968) Cytomembrane differentiation in the endoplasmic reticulum-Golgi apparatus-vesicle complex. Science 161: 171–173

    PubMed  Google Scholar 

  • Harris N, Oparka KJ (1983) Connections between dictyosomes, ER and GERL in cotyledons of mung bean (Vigna radiata L.). Protoplasma 114: 93–102

    Google Scholar 

  • —, Watson MD (1993) Vesicle transport of the vacuole and the central role of the Golgi apparatus. In: Harris CR, Coleman COD, Evans DE (eds) Endocytosis and vesicle traffic in plants. Cambridge University Press, Cambridge, pp 142–164 (Society of Experimental Biology seminar series, vol 45)

    Google Scholar 

  • Hillmer S, Freundt H, Robinson DG (1988) The partially coated reticulum and its relationship to the Golgi apparatus in higher plant cells. Eur J Cell Biol 47: 206–212

    Google Scholar 

  • Hirsch GC (1961) The external secretion of the pancreas as a whole and the communication between the endoplasmic reticulum and the Golgi bodies. In: Proceedings IUB/IUBS International Symposium, Biological Structure and Function, Stockholm, 1960, pp 195–208

    Google Scholar 

  • Inferrea C, Carrozza G (1975) The discovery of the Golgi apparatus by the black reaction and its present fine structural visualization. In: Santini M (ed) Golgi Centennial Symposium, Proceedings. Raven Press, New York, pp 13–38

    Google Scholar 

  • Krishnan HB, Franceschi VR, Okita TW (1986) Immunochemical studies on the role of the Golgi complex in protein-body formation in rice seeds. Planta 169: 471–480

    Google Scholar 

  • Leech JH, Mollenhauer HH, Whaley WG (1963) Ultrastructural changes in the root apex. In: Symposium of the Society of Experimental Biology XVII, cell differentiation. Cambridge University Press, Cambridge, pp 74–84

    Google Scholar 

  • Manton I (1960) On a reticular derivative from Golgi bodies in the meristem ofAnthoceros. J Biophys Biochem Cytol 8: 221–231

    PubMed  Google Scholar 

  • Marty MF (1973 a) Observation au microscope électronique à haute tension (3 MeV) de cellules végétales en coupes épaisses de l à 5 μ. CR Acad Sc Paris Sér D 277: 2681–2684

    Google Scholar 

  • Marty MF (1973 b) Dissemblance des faces golgiennes et activité des dictyosomes dans les cellules en cours de vacuolisation de la racine d'Euphorbia characias L. C R Acad Sci Paris Ser D 277: 1749–1752

    Google Scholar 

  • Melkonian M, Becker B, Becker D (1991) Scale formation in algae. J Electron Microsc Tech 17: 165–178

    PubMed  Google Scholar 

  • Mellman I, Simons K (1992) The Golgi complex: in vitro veritas? Cell 68: 829–840

    PubMed  Google Scholar 

  • Mollenhauer HH (1965 a) Transition forms of Golgi apparatus secretion vesicles. J Ultrastruct Res 12: 439–446

    PubMed  Google Scholar 

  • — (1965 b) An intercisternal structure in the Golgi apparatus. J Cell Biol 24: 504–511

    Google Scholar 

  • — (1966) Similarity of form in plant and animal Golgi apparatus. J Cell Biol 31: 77 A

    Google Scholar 

  • — (1971) Fragmentation of mature dictyosome cisternae. J Cell Biol 49: 212–214

    PubMed  Google Scholar 

  • - (1974) Role of Golgi apparatus in the formation of plant slimes, cuticles and extraneous wall material In: Proceedings of the 32nd Annual Meeting of the Electron Miroscopy Society of America, pp 86–87

  • - Hanson JB (1976) Golgi apparatus secretion of vacuolar substances in maize root cells. In: Proceedings of the 34th Annual Meeting of the Electron Microscopy Society of America, pp 44–45

  • —, Kogut C (1969) Formation and degradation of protein bodies during seed development and germination. J Cell Biol 43: 171 a

    Google Scholar 

  • —, Mollenhauer BA (1978) Changes in the secretory activity of the Golgi apparatus during the cell cycle in root tips of maize (Zea mays L). Planta 138: 113–118

    Google Scholar 

  • —, Morré DJ (1965) Inter association of dictyosomes to form plant cell Golgi apparatus. J Cell Biol 27: 58 A

    Google Scholar 

  • — — (1966 a) Golgi apparatus and plant secretion. Annu Rev Plant Physiol 17: 27–46

    Google Scholar 

  • — — (1966 b) Tubular connections between dictyosomes and forming secretory vesicles in plant Golgi apparatus. J Cell Biol 29: 373–376

    PubMed  Google Scholar 

  • — — (1976 a) Transition elements between endoplasmic reticulum and Golgi apparatus in plant cells. Cytobiologie 13: 297–306

    Google Scholar 

  • — — (1976 b) Cytochalasin B, but not colchicine, inhibits migration of secretory vesicles in root tips of maize. Protoplasma 87: 39–48

    PubMed  Google Scholar 

  • — — (1978 a) Structural compartmentalization of the cytosol: zones of exclusion, zones of adhesion, cytoskeletal and intercisternal elements. In: Roodyn DB (ed) Subcellular biochemistry, vol 5. Plenum, New York, pp 327–359

    Google Scholar 

  • — — (1978 b) Structural differences contrast higher plant and animal Golgi apparatus. J Cell Sci 32: 357–362

    PubMed  Google Scholar 

  • — — (1980) The Golgi apparatus. In: Stumpf PK, Conn EE (eds) The biochemistry of plants: a comprehensive treatise. Academic Press, New York, pp 437–488

    Google Scholar 

  • — — (1990) Dictyosome tubules, a conspicuous membranous system of the plant cell. In: Peachey LD, Williams DB (eds) Proceedings of the XIIth International Congress on Electron Microscopy. San Francisco Press, San Francisco, pp 702–703

    Google Scholar 

  • — — (1991) Perspectives on Golgi apparatus form and function. J Electron Microsc Tech 17: 2–14

    PubMed  Google Scholar 

  • —, Whaley WG (1963) An observation on the functioning of the Golgi apparatus. J Cell Biol 17: 222–225

    PubMed  Google Scholar 

  • — —, Leech JH (1961) A function of the Golgi apparatus in outer rootcap cells. J Ultrastruct Res 5: 193–200

    PubMed  Google Scholar 

  • —, Morré DJ, Bergmann L (1967) Homology of form in plant and animal Golgi apparatus. Anat Rec 158: 313–317

    PubMed  Google Scholar 

  • — —, Totten C (1973) Intercisternal substances of the Golgi apparatus. Unstacking of plant dictyosomes using chaotropic agents. Protoplasma 78: 443–459

    Google Scholar 

  • — —, VanDerWoude WJ (1975) Endoplasmic reticulum-Golgi apparatus associations in maize root tips. Mikroskopie 31: 257–272

    Google Scholar 

  • — —, Griffing LR (1988) Goated vesicles are associated with recent secretion sites at the plasma membrane in maize root cap cells. J Cell Biol 107: 131 a

    Google Scholar 

  • — — — (1991) Post Golgi apparatus structure and membrane removal in plants. Protoplasma 162: 55–60

    Google Scholar 

  • Moore PJ, Staehelin LA (1988) Immunogold localization of the cellwall-matrix polysaccharides rhamnogalacturonan I and xyloglucan during cell expansion and cytokinesis inTrifolium pratense L.; implication for secretory pathways. Planta 174: 433–445

    Google Scholar 

  • Morré DJ (1977) The Golgi apparatus and membrane biogenesis. In: Poste G, Nicolson GL (eds) The synthesis, assembly and turnover of cell surface components. Elsevier North-Holland, New York, pp 1–83

    Google Scholar 

  • —, Mollenhauer HH (1974) The endomembrane concept: a functional integration of endoplasmic reticulum and Golgi apparatus. In: Robards AW (ed) Dynamic aspects of plant ultrastructure. McGraw-Hill, Maidenhead, Berkshire, pp 84–137

    Google Scholar 

  • —, Ovtracht L (1977) Dynamics of Golgi apparatus: membrane differentiation and membrane flow. In Rev Cytol [Suppl] 5: 61–88

    Google Scholar 

  • — —, Cunningham WP (1967) Dictyosomes of plant and animal Golgi apparatus. In: Higashi N, Kazato K (eds) The world through the electron microscope, vol 3, biology edition. Mitzumo, Tokyo, pp 37–39

    Google Scholar 

  • Orci L, Glick BS, Rothman JE (1986) A new type of coated vesicular carrier that appears not to contain clathrin: its possible role in protein transport with the Golgi stack. Cell 46: 171–184

    PubMed  Google Scholar 

  • Perroncito A (1910) Contribution à l'étude de la biologie cellulaire. Mitochondries, chromidies et appareil réticulaire interne dans les cellules spermatiques. Arch Ital Biol 54: 307–345

    Google Scholar 

  • Pesacreta TC, Lucas WJ (1984) Plasma membrane coat and a coated vesicle-associated reticulum of membranes: their structure and possible interrelationship inChara corallina. J Cell Biol 98: 1537–1545

    PubMed  Google Scholar 

  • — — (1985) Presence of a partially-coated reticulum in angiosperms. Protoplasma 25: 173–184

    Google Scholar 

  • Ray PM, Eisinger WR, Robinson DG (1976) Organelles involved in cell wall polysaccharide formation and transport in pea cells. Ber Deutsch Bot Ges 89: 121–146

    Google Scholar 

  • Roth J, Taatjes DJ, Lucocq JM (1985) Demonstration of an extensivetrans-tubular network continuous with Golgi apparatus stack that may function in glycosylation. Cell 4533: 287–295

    Google Scholar 

  • Rothman JE (1985) The compartmental organization of the Golgi apparatus. Scient Am 253: 74–89

    Google Scholar 

  • Tandler B, Morré DJ (1982) Golgi apparatus negatively stained in situ using a modified tannic acid fixation in specimens of cat trachea. J Cell Biol 95: 267 a

    Google Scholar 

  • Turner FR, Whaley WG (1965) Intercisternal elements of the Golgi apparatus. Science 147: 1303–1304

    PubMed  Google Scholar 

  • Whaley WG (1975) The Golgi apparatus. Springer, Wien New York [Alfert M et al (eds) Cell biology monographs, vol 2]

    Google Scholar 

  • —, Mollenhauer HH (1963) The Golgi apparatus and cell plate formation — a postulate. J Cell Biol 17: 216–221

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mollenhauer, H.H., Morré, D.J. Structure of Golgi apparatus. Protoplasma 180, 14–28 (1994). https://doi.org/10.1007/BF01379220

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01379220

Keywords

Navigation