Skip to main content
Log in

New functions for coenzyme Q

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Coenzyme Q is primarily identified with its role in energy coupling where it is involved in the generation of a proton gradient across membranes to drive ATP formation. Its identification as a significant antioxidant throughout cellular membranes is developing. Its function in other membrane redox systems introduces new functions such as the generation of hydrogen peroxide related to cellular signal systems or the acidification of other organelles. A role in the control of cell growth and apoptosis has also been introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Åberg F, Appelkvist E-L, Dallner G, Ernster L (1992) Distribution and redox state of ubiquinones in rat and human tissue. Arch Biochem Biophys 295: 230–234

    Google Scholar 

  • —, Zhang Y, Teclebrhan H, Appelkvist E-L, Dallner G (1996) Increases in tissue levels of ubiquinone in association with peroxisome proliferation. Chem Biol Interact 99: 205–218

    Google Scholar 

  • Alcain FJ, Löw H, Crane FL (1994) Iron reverses impermeable chelator inhibition of DNA synthesis in CC1 39 cells. Proc Natl Acad Sci USA 91: 7903–7906

    Google Scholar 

  • — — — (1995) Iron at the cell surface controls both DNA synthesis and plasma membrane redox. Protoplasma 184: 233–237

    Google Scholar 

  • Barroso MP, Gomez-Diaz C, Villalba JM, Buron ML, López-Lluch G, Navas P (1997) Plasma membrane ubiquinone controls ceramide production and prevents cell death induced by serum withdrawal. J Bioenerg Biomembr 29: 259–267

    Google Scholar 

  • Beyer RE (1991) The role of coenzyme Q in endurance trainingacquired resistance to free radical damage. In: Folkers K, Littarru GP, Yamagami T (eds) Biomedical and clinical aspects of coenzyme Q, vol 6. Elsevier, Amsterdam, pp 501–512

    Google Scholar 

  • —, Segura-Aguilar J, di Bernardo S, Cavazzoni M, Fato R, Fiorentini D, Galli MC, Setti M, Landi L, Lenaz G (1997) The two electron quinone reductase DT-diaphorase generates and maintains the antioxidant form of coenzyme Q in membranes. Mol Aspects Med 18 (S): 15–23

    Google Scholar 

  • Bienfait HF, Lüttge V (1988) On the function of two systems that can transfer electrons across the plasma membrane. Plant Physiol Biochem 26: 665–671

    Google Scholar 

  • Bonflni L, Migliaccio E, Pelicci G, Lanfrancone L, Pelicci P-G (1996) Not all She's roads lead to ras. Trends Biochem Sci 21: 257–261

    Google Scholar 

  • Brandt U (1997) Coenzyme Q10: an essential component of the proton translocation machinery in complex I. Biochim Biophys Acta 1318: 79–91

    Google Scholar 

  • Brightman AO, Wang J, Miu RK, Sun IL, Barr R, Crane FL, Morré DJ (1992) A growth factor and hormone stimulated NADH oxidase from rat liver plasma membrane. Biochim Biophys Acta 1105: 109–117

    Google Scholar 

  • Bunn HF, Poyton RO (1996) Oxygen sensing and molecular adaption to hypoxia. Physiol Rev 76: 839–885

    Google Scholar 

  • Cadenas E, Boveris A, Ragan CI, Stoppani AOM (1977) Production of Superoxide radicals and hydrogen peroxide by NADH ubiquinone reductase and ubiquinol cytochrome c reductase from beef heart mitochondria. Arch Biochem Biophys 180: 248–257

    Google Scholar 

  • Chitnis PR (1996) Photosystem I. Plant Physiol 111: 661–669

    Google Scholar 

  • Clark MG, Partick EJ, Crane FL (1982) Properties and regulation of a trans-plasma membrane redox system in rat liver. Biochem J 204: 795–801

    Google Scholar 

  • Collins MD (1985) Analysis of isoprenoid quinones. Methods Microbiol 18: 329–360

    Google Scholar 

  • Constantinescu A, Maguire JJ, Packer L (1994) Interactions between ubiquinones and vitamins in membranes and cells. Mol Aspects Med 15 (S): 57–65

    Google Scholar 

  • Crane FL (1986) Physiological coenzyme Q function and pharmacological reactions. In: Folkers K, Yamamura Y (eds) Biomedical and clinical aspects of coenzyme Q, vol 5. Elsevier, Amsterdam, pp 3–14

    Google Scholar 

  • — (1990) Development of concepts for the role of ubiquinones in biological membranes. In: Lenaz G, Barnabei O, Rabbi A, Battino M (eds) Highlights in ubiquinone research. Taylor and Francis, London, pp 3–17

    Google Scholar 

  • —, Sun IL, Barr R, Morré DJ (1984) Coenzyme Q in Golgi apparatus membrane redox activity and proton uptake. In: Folkers K, Yamamura Y (eds) Biomedical and clinical aspects of coenzyme Q, vol 4. Elsevier, Amsterdam, pp 77–86

    Google Scholar 

  • — —, Sun E, Morré DJ (1991) Alternative functions for coenzyme Q in endomembranes. In: Folkers K, Littarru GP, Yamagami T (eds) Biomedical and clinical aspects of coenzyme Q, vol 6. Elsevier, Amsterdam, pp 59–70

    Google Scholar 

  • — —, Crowe RA, Alcain FJ, Löw H (1994) Coenzyme Q10, plasma oxidase and growth control. Mol Aspects Med 15 (S): 1–11

    Google Scholar 

  • — —, Sun EE, Crowe RA (1995) Plasma membrane redox and regulation of cell growth. Protoplasma 184: 3–7

    Google Scholar 

  • Crowe RA, Crane FL (1995) Effect of growth factors and antitumor drugs on normal and Val 12 Ha ras transformed C3H 10T1/2 cell transplasma membrane electron transport and growth. Protoplasma 184: 209–219

    Google Scholar 

  • Dancis A, Roman DG. Anderson GJ, Hinnebush AL, Klausner RD (1992) Ferric reductase ofSaccharomyces cerevisiae: molecular characterization, role in iron uptake and transcriptional control by iron. Proc Natl Acad Sci USA 89: 3869–3873

    Google Scholar 

  • Ernster L, Dallner G (1995) Biochemical, physiological and medical aspects of ubiquinone function. Biochim Biophys Acta 1271: 195–204

    Google Scholar 

  • Garner B, van Reyk D, Dean RT, Jessup W (1997) Direct copper reduction by macrophages. J Biol Chem 272: 6927–6935

    Google Scholar 

  • Hannun YA, Obeid LM (1995) Ceramide: an intracellular signal for apoptosis. Trends Biochem Sci 20: 73–77

    Google Scholar 

  • Hansford RG, Hogue BA, Mildaziene V (1997) Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age. J Bioenerg Biomembr 29: 89–95

    Google Scholar 

  • Helfenbaum L, Ngo A, Ghelli A, Linnane AW, Delgi Esposti M (1997) Proton pumping of mitochondrial complex I: differential activation by analogs of ubiquinone J. Bioenerg Biomembr 29: 71–80

    Google Scholar 

  • Hemming FW, Pennock JF (1965) Vitamins and ubiquinone status in animals. In: Morton RA (ed) Biochemistry of quinones, Academic Press, London, pp 287–315

    Google Scholar 

  • Irani K, Xia Y, Zweier JL, Sollott SJ, Der CJ, Fearon ER, Sundareson M, Finkel T, Goldschmidt-Clermont PJ (1997) Mitogenic signalling mediated by oxidants in ras-transformed fibroblasts. Science 275: 1649–1651

    Google Scholar 

  • Iuchi S, Lin ECC (1991) Adaption ofE. coli to respiratory conditions: regulation of gene expression. Cell 66: 5–7

    Google Scholar 

  • Junge W, Lill H, Engelbrecht S (1997) ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biochem Sci 22: 420–423

    Google Scholar 

  • Kagan VE, Nohl H, Quinn PJ (1996) Coenzyme Q: its role in scavenging and generation of radicals in membranes. In: Cadenas E, Packer L (eds) Handbook of antioxidants. M Dekker, New York, pp 157–201

    Google Scholar 

  • Kishi T, Takahashi T, Okamoto T (1997) Cytosolic NADPH-UQ reductase-linked recycling of cellular ubiquinol: its protective effect against carbon tetrachloride hepatotoxicity in the rat. Mol Aspects Med 18 (S): 71–77

    Google Scholar 

  • Langsjoen PH, Langsjoen AM (1999) Overview of the use of CoQ10 in cardiovascular disease. Biofactors 9: 273–284

    Google Scholar 

  • Larm JA, Vaillant F, Linnane AW, Lawen A (1994) Up-regulation of the plasma membrane oxidoreductase as a prerequisite for the viability of human namalwa ϱ ° cells. J Biol Chem 269: 30097–30100

    Google Scholar 

  • Lenaz G (ed) (1985) Coenzyme Q: biochemistry, bioenergetics and clinical applications of ubiquinone. Wiley, Chichester

    Google Scholar 

  • —, Barnabei O, Rabbi A, Battino M (eds) (1990) Highlights in ubiquinone research. Taylor and Francis, London

    Google Scholar 

  • Löw H, Werner S (1976) Effects of oxidizing and reducing agents on the adenylate cyclase activity in adipocyte plasma membranes. FEBS Lett 65: 96–100

    Google Scholar 

  • —, Crane FL, Grebing C, Hall K, Tally M (1979) Metabolic milieu and insulin action. In: Waldhäusl WK (ed) Diabetes 1979. Excerpta Medica, Amsterdam, pp 209–213

    Google Scholar 

  • — —, Partick EJ, Clark MG (1985) β-Adrenergic stimulation of transsarcolemma efflux in perfused rat heart: possible regulation of Ca2+ channels by a sarcolemma redox system. Biochim Biophys Acta 844: 142–148

    Google Scholar 

  • Low PS, Rathinavdu P, Harrison MC (1993) Regulation of glycolysis via reversible enzyme binding to the membrane protein band 3. J Biol Chem 268: 14627–14631

    Google Scholar 

  • Lüthje S, Döring O, Heuer S, Lüthen H, Böttger M (1997) Oxidoreductases in plant plasma membranes. Biochim Biophys Acta 1331: 81–102

    Google Scholar 

  • Medina MA, Castillo-Olivares A, Ninez de Castro I (1997) Multifunctional plasma membrane redox systems. Bio Essays 19: 977–984

    Google Scholar 

  • Meier B, Radeke HH, Selle S, Younes M, Sies H, Resch K, Hubermehl GG (1989) Human fibroblasts release reactive oxygen species in response to interleukin or tumor necrosis factor a. Biochem J 263: 539–545

    Google Scholar 

  • Mellors A, Tappel AL (1966) The inhibition of mitochondrial peroxidation by coenzyme Q. J Biol Chem 241: 4353–4356

    Google Scholar 

  • Mitchell P (1990) The classical mobile carrier function of lipophilic quinones in the osmochemistry of electron driven proton translocation. In: Lenaz G, Barnabei D, Rabbi A, Battino M (eds) Highlights in ubiquinone research. Taylor and Francis, London, pp 77–82

    Google Scholar 

  • Morgan EH, Smith GD, Peters TJ (1986) Uptake and subcellular processing of59Fe125I labeled transferrin by rat liver. Biochem J 237: 163–173

    Google Scholar 

  • Morré DJ, Davidson M, Geilen C, Lawrence J, Fiesher G, Crowe R, Crane FL (1993) NADH oxidase activity of rat liver plasma membrane acivated by guanine nucleotides. Biochem J 292: 647–653

    Google Scholar 

  • —, Pogue R, Morre DM (1999) A multifunctional hydroquinone oxidase of the external cell surface and sera. Biofactors 9: 179–187

    Google Scholar 

  • Morrison LE, Schelhorn JE, Cotton TM, Bering CL, Loach PA (1982) Electrochemical and spectral properties of ubiquinone and synthetic analogs. In: Trumpower BL (ed) Function of quinones in energy conserving systems. Academic Press, New York, pp 35–58

    Google Scholar 

  • Navas P, Sun IL, Morré DJ, Crane FL (1986) Decrease of NADH in HeLa cells in the presence of transferrin or ferricyanide. Biochem Biophys Res Commun 135: 110–115

    Google Scholar 

  • Nohl H, Gills L, Schönheit K, Lin Y (1996) Conditions allowing redox-cycling ubisemi-quinone in mitochondria to establish a direct couple with molecular oxygen. Free Radical Biol Med 20: 207–213

    Google Scholar 

  • Pahl HL, Baeuerle PA (1997) The ER-overload response: activation of NF-κB. Trends Biochem Sci 22: 63–67

    Google Scholar 

  • Polyak K, Xia Y, Zweier JL (1997) A model for p53-induced apoptosis. Nature 389: 300–305

    Google Scholar 

  • Poon WW, Do TQ, Marbois BN, Clarke CF (1997) Sensitivity to treatment with polyunsaturated fatty acids is a general characteristic of the ubiquinone deficient yeast coq mutants. Mol Aspects Med 18 (S): 121–128

    Google Scholar 

  • Ramasarma T, Swaroop A, MacKellar W, Crane FL (1981) Generation of hydrogen peroxide on oxidation of NADH by hepatic plasma membranes. J Bioenerg Biomembr 13: 241–253

    Google Scholar 

  • Rodriguez-Aguilera JC, Navarro F, Arroya A, Alcain FJ, Villalba JM, Navas P (1995) Vitamin C stabilization as a consequence of the plasma membrane redox system. Protoplasma 184: 229–232

    Google Scholar 

  • Romagnoli A, Oradei A, Destito C, Iacocagni A, Marin AW, Littarru GP (1994) Protective role of coenzyme Q during reperfusion of ischemic limbs. Mol Aspects Med 15 (S): 177–186

    Google Scholar 

  • Sacks PG, Oke V, Calkins DP, Vasey T, Terry NHA (1990) Effects of all trans retinoic acid on growth proliferation and cell death in a multicellular tumor spheroid model for squamous carcinoma. J Cell Physiol 144: 237–243

    Google Scholar 

  • Santos-Ocaña C, Cordoba F, Crane FL, Clarke CF, Navas P (1998) Coenzyme Q6 and iron reduction are responsible for the extracellular ascorbate stabilization at the plasma membrane ofSaccharomyces cerevlsiae. J Biol Chem 273: 8099–8105

    Google Scholar 

  • Satoh T, Nakafuku M, Kaziro Y (1992) Function of ras as a molecular switch in signal transduction. J Biol Chem 267: 24149–24152

    Google Scholar 

  • Shibanuma M, Kurocki J, Nose K (1990) Stimulation by H2O2 of DNA synthesis, competence family gene expression and phosphorylation of specific proteins in quiescent BALB 3-T-3 cells. Oncogene 5: 1025–1032

    Google Scholar 

  • Sun IL, Crane FL, Grebing C, Löw H (1985) Transmembrane redox in control of cell growth. Exp Cell Res 156: 528–536

    Google Scholar 

  • —, Navas P, Crane FL, Morré DJ, Low H (1987) NADH diferric transferrin reductase activity in liver plasma membranes. J Biol Chem 262: 15915–15921

    Google Scholar 

  • —, Toole-Simms W, Crane FL, Morré DJ, Low H, Chou JY (1988) Reduction of diferric transferrin by SV40 transformed pineal cells stimulates Na+/H+ antiport activity. Biochim Biophys Acta 938: 17–23

    Google Scholar 

  • —, Sun EE, Crane FL, Morré DJ, Lindgren A, Löw H (1992) A requirement for coenzyme Q in plasma membrane electron transport. Proc Natl Acad Sci USA 89: 11126–11130

    Google Scholar 

  • —, Crane FL, Low H (1994) Bombesin stimulates transplasma membrane electron transport in swiss 3T3 cells. Biochim Biophys Acta 1221: 206–210

    Google Scholar 

  • —, Sun EE, Crane FL (1995) Comparison of growth stimulation of HeLa cells and mouse fibroblasts by coenzyme Q10. Protoplasma 184: 214–219

    Google Scholar 

  • — — — (1996) Cytokine inhibition of transplasma membrane electron transport. Biochem Mol Biol Int 38: 175–180

    Google Scholar 

  • Takahashi T, Okamoto T, Mori K, Sayo H, Kishi T (1993) Distribution of ubiquinone and ubiquinone homologues in rat tissues and subcellular fractions. Lipids 28: 803–809

    Google Scholar 

  • —, Yamaguchi T, Shitashige M, Okamoto T, Kishi T (1995) Reduction of ubiquinone in membrane lipids by rat liver cytosol and its involvement in the cellular defense system against lipid peroxidation. Biochem J 309: 883–890

    Google Scholar 

  • Thomas D, Ritz M-F, Malviya AN, Gaillard S (1996) Intracellular acidification mediates the proliferative response of PC12 cells induced by potassium ferricyanide and involves MAP kinase activation. Int J Cancer 68: 547–552

    Google Scholar 

  • Trumpower BL (1990) The proton motive Q cycle. J Biol Chem 265: 11409–11412

    Google Scholar 

  • Villalba JM, Navarro F, Cordoba F, Serrano A, Arroyo A, Crane FL, Navas P (1995) Coenzyme Q reductase from liver plasma membrane: purification and role in transplasma membrane electron transport. Proc Natl Acad Sci USA 92: 4887–4891

    Google Scholar 

  • Wenner CE, Cutry AF (1990) The stimualtion of growth by extracellular oxidants. In: Crane FL, Morré DJ, Löw H (eds) Oxidation reduction at the plasma membrane: relation to growth and transport, vol 1. CRC Press, Boca Raton, pp 131–139

    Google Scholar 

  • Wolvetang EJ, Larm JA, Moutsoulas P, Lawen A (1996) Apoptosis induced by inhibitors of the plasma membrane NADH oxidase involves Bcl2 and calcineurin. Cell Growth Diff 7: 1315–1325

    Google Scholar 

  • Yamamoto Y, Yamashito S (1997) Plasma ratio of ubiquinol and ubiquinone as a marker of oxidate stress. Mol Aspects Med 18 (S): 79–84

    Google Scholar 

  • Youngman LD, Shigenaga M, Motchnik P, Ames BN (1994) Effects of a peroxisomal proliferator on plasma and tissue levels of coenzyme Q9, other antioxidants and oxidative damage to DNA (oxo 8 dG): evidence that PPs deplete antioxidants and increase oxidative damage to DNA. Mol Aspects Med 15 (S): 131–141

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crane, F.L. New functions for coenzyme Q. Protoplasma 213, 127–133 (2000). https://doi.org/10.1007/BF01282150

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01282150

Keywords

Navigation