Skip to main content
Log in

Excitatory amino acidergic pathways and receptors in the basal ganglia

  • Published:
Amino Acids Aims and scope Submit manuscript

Summary

The striatum receives the majority of excitatory amino acidergic input to the basal ganglia from neocortical and allocortical sources. The subthalamic nucleus and the substantia nigra also receive excitatory amino acidergic inputs from neocortex. The subthalamic nucleus, which has prominent projections to the pallidum and nigra, is the only known intrinsic excitatory amino acidergic component of the basal ganglia. Possible excitatory amino acidergic inputs reach the basal ganglia from the intralaminar thalamic nuclei and the pedunculo-pontine nucleus. The striatum is richly endowed with all subtypes of excitatory amino acid receptors and these appear to be inhomogeneously distributed within the striatal complex. The non-striatal nuclei contain lesser levels of excitatory amino acid receptors and the relative proportion of these receptors varies between nuclei. The presence of high densities of excitatory amino acid receptors is a phylogenetically conserved feature of the striatum and its non-mammalian homologues. In Huntington's disease, there is substantial depletion ofα-amino-3-hydroxy-5-methylisoxazole-4-propionic acid, N-methyl-D-aspartate, and kainate receptors within the striatum. In Parkinson's disease substantia nigra, there is significant loss of N-methyl-D-aspartate andα-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afsharpour S (1985) J Comp Neurol 236: 14–28

    Google Scholar 

  2. Albin RL, Aldridge JW, Young AB, Gilman S (1989a) Brain Res 491: 185–188

    Google Scholar 

  3. Albin RL, Young AB, Penney JB (1989b) TINS 12: 366–375

    Google Scholar 

  4. Albin RL, Makowiec RL, Hollingsworth Z, Dure L, Penney JB, Young AB (1991) Neuroscience (in press)

  5. Araneda R, Bustos G (1989) J Neurochem 52: 962–970

    Google Scholar 

  6. Beckstead RM (1979) J Comp Neurol 184: 43–62

    Google Scholar 

  7. Beckstead RM (1983) Brain Res 275: 137–142

    Google Scholar 

  8. Bunney BS, Aghajanian GK (1976) Brain Res 117: 423–435

    Google Scholar 

  9. Cheramy A, Romo R, Glowinski J (1986) Ann N Y Acad Sci 473: 80–91

    Google Scholar 

  10. Christie MJ, James LB, Beart PM (1985a) J Neurochem 45: 477–482

    Google Scholar 

  11. Christie MJ, Bridge S, James LB, Beart PM (1985b) Brain Res 333: 169–172

    Google Scholar 

  12. Dietl MM, Cortes R, Palacios JM (1988a) Brain Res 439: 360–365

    Google Scholar 

  13. Dietl MM, Cortes R, Palacios JM (1988b) Brain Res 439: 366–371

    Google Scholar 

  14. Dietl MM, Palacios JM (1988c) Brain Res 439: 354–359

    Google Scholar 

  15. DiFiglia M (1990) TINS 13: 286–289

    Google Scholar 

  16. Dinopoulos A, Dori I, Davies SW, Parnavelas JG (1989) Exp Neurol 105: 36–44

    Google Scholar 

  17. Donoghue JP, Herkenham M (1986) Brain Res 365: 397–403

    Google Scholar 

  18. Dure LS, Young AB, Penney JB (1991) Ann Neurol (in press)

  19. Errami M, Nieoullon A (1988) J Neurochem 51: 579–586

    Google Scholar 

  20. Fonnum F, Storm-Mathisen J, Divac I (1981) Neuroscience 6: 863–873

    Google Scholar 

  21. Fuller TA, Russchen FT, Price JL (1987) J Comp Neurol 258: 317–338

    Google Scholar 

  22. Gerfen CR (1989) Science 246: 385–388

    Google Scholar 

  23. Girault JA, Barbeito L, Spampinato U, Gozlan H, Glowinski J, Besson M (1986) Neurochemistry 47: 98–106

    Google Scholar 

  24. Godukhin OV, Zharikova AD, Novoselov VI (1980) Neuroscience 5: 2151–2154

    Google Scholar 

  25. Gould E, Woolf NJ, Butcher LL (1989) Neuroscience 28: 611–623

    Google Scholar 

  26. Greenamyre JT, Young AB (1989) Neurosci Lett 101: 133–137

    Google Scholar 

  27. Greenamyre JT, Higgins DS, Young AB, Penney JB (1990) Int J Dev Neurosci 8: 437–445

    Google Scholar 

  28. Groenewegen HJ, Berendse HW (1990) J Comp Neurol 294: 607–622

    Google Scholar 

  29. Hassler R, Haug P, Nitsch C, Kim JS, Paik K (1982) J Neurochem 38: 1087–1098

    Google Scholar 

  30. Herrling PL (1985) Neuroscience 14: 417–426

    Google Scholar 

  31. Higgins DS, Greenamyre JT, Young AB, Penney JB (1989) Soc Neurosci Abstr 15: 1163

    Google Scholar 

  32. Kalivas PW, Duffy P, and Barrow J (1989) J Pharm Exp Ther 251: 378–386

    Google Scholar 

  33. Kemp JM, Powell TPS (1970) Brain 93: 525–546

    Google Scholar 

  34. Kita H, Kitai ST (1987) J Comp Neurol 260: 435–452

    Google Scholar 

  35. Kornhuber J, Kim JS, Kornhuber KE, Kornhuber HH (1985) Brain Res 322: 124–126

    Google Scholar 

  36. Lee HJ, Rye DB, Hallanger AE, Levey AI, Wainer BH (1988) J Comp Neurol 275: 469–492

    Google Scholar 

  37. McGeer PL, McGeer EG, Scherer U, Singh K (1977) Brain Res 128: 369–373

    Google Scholar 

  38. McGeorge AJ, Faull RLM (1989) Neuroscience 29: 503–537

    Google Scholar 

  39. Mitchell IJ, Brotchie JM, Graham WC, Page RD, Robertson RG, Sambrook MA, Crossman AR (1991) In: Bernardi G, Carpenter MB, Di Chiara G, Morelli M, Stanzione P (eds) The basal ganglia III. Plenum, New York London, p 607

    Google Scholar 

  40. Monaghan DT, Olverman HJ, Nguyen L, Watkins JC, Cotman CW (1988) Proc Natl Acad Sci USA 85: 9836–9840

    Google Scholar 

  41. Monaghan DT, Bridges RJ, Cotman CW (1989) Ann Rev Pharmacol Toxicol 29: 365–402

    Google Scholar 

  42. Mount H, Quirion R, Chaudieu I, Boksa P (1990) J Neurochem 55: 268–275

    Google Scholar 

  43. Nieoullon A, Scarfone E, Kerkerian L, Errami M, Dusticier N (1985) Neurosci Lett 58: 299–304

    Google Scholar 

  44. Northcutt RG (1981) Ann Rev Neurosci 4: 301–350

    Google Scholar 

  45. Parent A (1986) Comparative neurobiology of the basal ganglia. Wiley-Interscience, New York

    Google Scholar 

  46. Parent A, Smith Y, Filion M, Dumas J (1989) Neurosci Lett 96: 140–144

    Google Scholar 

  47. Parent A (1990) TINS 13: 254–258

    Google Scholar 

  48. Penney JB, Difazio MC, Young AB (1990) Neurochem Int 16: 59

    Google Scholar 

  49. Reiner A, Anderson KD (1990) Brain Res Rev 15: 251–265

    Google Scholar 

  50. Reiner A, Brauth SE, Karten HJ (1984) TINS 320–325

  51. Richfield EK, Albin R, Reiner A, Young AB, Penney JB (1988) Soc Neurosci Abstr 14: 1022

    Google Scholar 

  52. Robinson TG, Beart PM (1988) Brain Res Bull 20: 467–471

    Google Scholar 

  53. Robledo P, Feger J (1990) Brain Res 518: 47–54

    Google Scholar 

  54. Rouzaire-Dubois B, Scarnati E (1987a) Neuroscience 21: 429–440

    Google Scholar 

  55. Rouzaire-Dubois B, Scarnati E (1987b) Brain Res 403: 366–370

    Google Scholar 

  56. Rye DB, Saper CB, Lee HJ, Wainer BH (1987) J Comp Neurol 259: 483–528

    Google Scholar 

  57. Sakurai SY, Albin RL, Reiner A, Young AB (1990) Soc Neurosci Abstr 16: 90

    Google Scholar 

  58. Scarnati E, Proia A, Campana E, Pacitti C (1986) Exp Brain Res 62: 470–478

    Google Scholar 

  59. Schlegel JH, Kriegstein A (1987) J Comp Neurol 265: 521–529

    Google Scholar 

  60. Selemon LD, Goldman-Rakic PS (1985) J Neurosci 5: 776–794

    Google Scholar 

  61. Sladeczek F, Recasens M, Bockaert J (1988) TINS 11: 545–549

    Google Scholar 

  62. Sonsalla PK, Nicklas WJ, Heikkila RE (1989) Science 243: 398–400

    Google Scholar 

  63. Spencer HJ (1976) Brain Research 102: 91–101

    Google Scholar 

  64. Stone TW (1979) Br J Pharmacol 67: 545–551

    Google Scholar 

  65. Streit P (1980) J Comp Neurol 191: 429–463

    Google Scholar 

  66. Tanaka D (1987) J Neurosci 7: 4095–4106

    Google Scholar 

  67. Turski L, Bressler K, Rettig K-J, Loeschmann P-A, Wachtel H (1991) Nature 349: 414–418

    Google Scholar 

  68. Walaas I (1981) Neuroscience 6: 399–401

    Google Scholar 

  69. Walaas I, Fonnum F (1979) Neuroscience 4: 209–216

    Google Scholar 

  70. Young AB, Fagg GE (1990) TIPS 11: 126–133

    Google Scholar 

  71. Young AB, Sakurai SY, Albin RL (1990) Soc Neurosci Abstr 16: 90

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albin, R.L., Makowiec, R.L., Hollingsworth, Z. et al. Excitatory amino acidergic pathways and receptors in the basal ganglia. Amino Acids 1, 339–350 (1991). https://doi.org/10.1007/BF00814003

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00814003

Keywords

Navigation