Skip to main content
Log in

Syntheses of optically active 2-amino-4-oxobutyric acid and N,O-protected derivatives

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Summary

Strategies for the synthesis of optically active aspartaldehyde derivatives are reviewed. Most of them are using the chiral pool: allylglycine or naturally occurring homoserine, aspartic acid or methionme and side chain modifications. This will be developed in the first part. Some other original routes are also displayed in the second part. Different aspects of each strategy are discussed: the nature and number of steps, the problem of protecting groups, the price and availability of starting materials. Some synthetic applications of such interesting chiral synthons are shown in the last part.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ac:

acetyl

An:

Anisyl or 4-methoxy benzyl

Bn:

benzyl

Boc:

tert-butoxycarbonyl

BOP-PF6 :

benzotriazol-l-yloxytris(dimethylamino)phosphonium hexafluorophosphate

Cbz:

benzyloxycarbonyl

DCC:

dicyclohexylcarbodiimide

DIBAL:

diisobutyl aluminum hydride

DIPEA:

diisopropyl ethyl amine

DMF:

dimethyl formamide

DMSO:

dimethylsulfoxide

EDCI:

l-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride

HP:

4-hydroxy phenyl

MP:

4-methoxy phenyl

NCS:

N-chlorosuccinimide

NMR:

nuclear magnetic resonance

PCC:

pyridinium chlorochromate

Pht:

phthaloyl

Ser:

serine

tBu:

tert-butyl

TEMPO:

2,2,6,6-tetramethyl piperidine-l-oxyl

TFA:

trifluoro acetic acid

Trityl:

triphenyl methyl

Val:

valine

References

  • Agami C, Couty F, Poursoulis M (1992) Aza-Cope rearrangement. Asymmetric syntheses ofα-amino acids: (R)-homoserine lactone and (R,R)-4-(l-hydroxy-l-methylethyl)proline. Synlett: 847–848

  • Agami C, Couty F, Lin J, Mikaeloff A, Pousoulis M (1993) Asymmetric synthesis ofα-amino acids via cationic aza-Cope rearrangements. Tetrahedron 49: 7239–7250

    Google Scholar 

  • Albertson NF (1946) The synthesis of amino acids from ethyl acetamidomalonate and ethyl acetamidocyanoacetate. III. The use of primary halides. J Am Chem Soc 68: 450–453

    Google Scholar 

  • Baldwin JE, Flinn A (1987) Use of L-aspartic acidβ-semialdehyde in the synthesis of more compex non protein amino acids. Tetrahedron Lett 28: 3605–3608

    Google Scholar 

  • Baldwin JE, Lee E (1986) Synthesis of bicyclicγ-lactams via oxazolidmones. Tetrahedron 42: 6551–6554

    Google Scholar 

  • Baldwin JE, Lowe C, Schofield CJ, Lee E (1986) Aγ-lactam analogue of penems possessing antibacterial activity. Tetrahedron Lett 27: 3461–3464 and 5042

    Google Scholar 

  • Baldwin JE, North M, Flinn A (1987) A convenient new synthesis of homoserine lactone. Tetrahedron Lett 28: 3167–3168

    Google Scholar 

  • Baldwin JE, Norris WJ, Freeman RT, Bradley M, Adlington RM, Long-Fos S, Schofield CJ (1988a)γ-Lactam formation from tripeptides with isopenicillin N synthase. J Chem Soc Chem Com: 1128–1130

  • Baldwin JE, North M, Flinn A (1988b) Synthesis and rearrangement of homoserine derivatives. Tetrahedron 44: 637–642

    Google Scholar 

  • Baldwin JE, Freeman RT, Schofield C (1989a) Synthesis of a novel bicyclicγ-lactam analogue of the 1-oxapenams. Tetrahedron Lett 30: 4019–4020

    Google Scholar 

  • Baldwin JE, Freeman RT, Lowe C, Schofield CJ, Lee E (1989b) Aγ-lactam analogue of the penems possessing antibacterial activity. Tetrahedron 45: 4537–4550

    Google Scholar 

  • Barrett GC (1985) Chemistry and biochemistry of the amino acids. In: Barrett GC (ed) Chapman and Hall, London New York, pp 246–296

    Google Scholar 

  • Ben-Bari M, Dewynter G, Aymard C, Jei T, Montero J-L (1995) Synthèse de dérivés phosphonylés de l'acide aspartique inhibiteurs potentiels de l'ATCase. Phosphorus, Sulfur and Silicon 105: 129–144

    Google Scholar 

  • Bergmeier SC, Cobas AA, Rapoport H (1993) Chirospecific synthesis of (1S, 3R)-l-amino-3-(hydroxymethyl)cyclopentane, precursor for carbocyclic nucleoside synthesis. Dieckmann cyclisation with anα-amino acid. J Org Chem 58: 2369–2376

    Google Scholar 

  • Black S, Wright NG (1955a)β-Aspartokinase andβ-aspartyl phosphate. J Biol Chem 213: 27–38

    PubMed  Google Scholar 

  • Black S, Wright NG (1955b) Asparticβ-semialdehyde dehydrogenase and asparticβ-semialdehyde. J Biol Chem 213: 39–50

    PubMed  Google Scholar 

  • Black S, Wright NG (1955c) Homoserine dehydrogenase. J Biol Chem 213: 51–60

    PubMed  Google Scholar 

  • Blickling S, Renner C, Laber B, PohlenzH-D, Holak TA, Huber R (1997) Reaction mechanism ofEscherichia coli dihydrodipicolinate synthase investigated by X-ray crystallography and NMR spectroscopy. Biochemistry 36: 24–33

    PubMed  Google Scholar 

  • Bold G, Steiner H, Moesch L, Walliser B (1990) Herstellung von “Semialdehyd”-Derivaten von Asparaginsäure-und Glutaminsäure durch Rosenmund-Reduktion. Helv Chim Acta 73: 405–410

    Google Scholar 

  • Bratusek U, Kejzar I, Svete J, Stanovnik B (1996) The synthesis of N-phthaloyl-azatryptophane derivatives. Acta Chim Slov 43: 105–117

    Google Scholar 

  • Bubert C, Voigt J, Biasetton S, Reiser O (1994) A new approach toβ- andγ amino esters and amino aldehydes by regioselective ozonolysis of 2,3-dihydropyrroles and 1,2,3,4-tetrahydropyridines. Synlett: 675–677

  • Burger K, Rudolph M, Fehn S, Worku A, Gobulev A (1995) Application of hexafluoroacetone as protecting and activating reagent in amino acid and peptide chemistry. Amino Acids 8: 195–199

    Google Scholar 

  • Cannarsa MJ (1996) Single enantiomer drugs: new strategies and directions. Chem Ind: 374–378

  • Cavrini V, Chiarini A, Garuti L, Giovanninetti G, Franchi L (1976) Riceche su sostanze ad attivita antivirale. Nota V - analoghi strutturali dell'arginina. Farmaco Ed Sci 31: 599–606

    Google Scholar 

  • Chang MNT, Walsh CT (1981) Stereochemical analysis ofγ-replacement andγ-elimination processes catalyzed by a pyridoxal phosphate dependent enzyme. J Am Chem Soc 103: 4921–4927

    Google Scholar 

  • Chauvel EN, Llorens-Cortes C, Coric P, Wilk S, Roques BP, Fournié-Zaluski M-C (1994) Differential inhibition of aminopeptidase A and aminopeptidase N by newβ-amino thiols. J Med Chem 37: 2950–2957

    PubMed  Google Scholar 

  • Cooper RDG, Jose F, McShane L, Koppel GA (1978) A chiral synthesis of D-homoserine and its application to the synthesis of nocardicin A. Tetrahedron Lett: 2243–2246

  • Coppola GM (1987) Asymmetric synthesis: construction of chiral molecules using amino acids. John Wiley and Sons, New York

    Google Scholar 

  • Coulter CV, Gerrard JA, Kraunsoe JAE, Moore DJ, Pratt AJ (1996) (S)-Aspartate semialdehyde: synthetic and stuctural studies. Tetrahedron 52: 7127–7136

    Google Scholar 

  • Cox RJ, Sherwin WA, Lam LKP, Vederas JC (1996) Synthesis and evaluation of novel substrates and inhibitors of N-succinyl-L,L-diaminopimelate aminotransferase (DAPAT) fromEscherichia coli. J Am Chem Soc 118: 7449–7460

    Google Scholar 

  • Crosby J (1992) Chirality in industry: the commercial manufacture and applications of optically active compounds, vol 1. In: Collins AN, Sheldrake GN, Crosby J (eds) John Wiley and Sons, Chichester, pp 1–66

    Google Scholar 

  • Crosby J (1997) Chirality in industry II: developments in the manufacture and applications of optically active compounds, vol 2. In: Collins AN, Sheldrake GN, Crosby J (eds) John Wiley and Sons, Chichester, pp 1–10

    Google Scholar 

  • Cuvinot D, Mangeney P, Alexakis A, Normant JF, Lellouche JP (1989) Chiral trifluoro diamines as convenient reagents for determining the enantiomeric purity of aldehydes by use of19F NMR spectroscopy. J Org Chem 54: 2420–2425

    Google Scholar 

  • David S, Veyrieres A (1970) Synthesis of 3-amino-2,3-dideoxytetrose derivatives. Carbohyd Res 13: 203–209

    Google Scholar 

  • Davies IW, Reider PJ (1996) Practical asymmetric synthesis. Chem Ind: 412–415

  • De la Figuera N, Rozas I, Garcia-Lopez MT, Gonzales-Muniz R (1994) 2(S)-Amino-3-oxo-11b(R)-hexahydroindolizino[8,7-b]indole-5(S)-carboxylate as a new type ofβ-turn dipeptide mimetic. J Chem Soc Chem Commun: 613–614

  • De la Figuera N, Alkorta I, Garcia-Lopez MT, Herranz R, Gonzales-Muniz R (1995) 2-Amino-3-oxohexahydroindolizino[8,7-b]indole-5-carboxylate derivatives as new scaffolds for mimickingβ-turn secondary structures. Molecular dynamics and stereoselective synthesis. Tetrahedron 51: 7841–7856

    Google Scholar 

  • Dehmlow EV, Westerheide R (1993) A new simple route to N,O-protected (S)-2-amino-4-oxobutyric acid. Synthesis: 1225–1226

  • Duthaler RO (1994) Recent developments in the stereoselective synthesis ofα-amino acids. Tetrahedron 50: 1539–1650

    Google Scholar 

  • Easton CJ, Hutton CA (1998) Recent developments in the use of N-phthaloyl-amino acid derivatives in synthesis. Synlett: 457–466

  • Emmer G, Grassberger MA, Schulz G, Boesch D, Gavériaux C, Loor F (1994) Derivatives of a novel cyclopeptolide. 2. Synthesis, activity against multidrug resistance in CHO and KB cellsin vitro, and structure-activity relationships. J Med Chem 37: 1918–1928

    PubMed  Google Scholar 

  • Faust J, Schreiber K (1989) Der Normal isierungsfaktor für die Tomatenmutante Chloronerva; Synthese des (S)-Piperidin-2-Carbonsäureanalogons von Nicotianamin. Z Chem 29: 20–21

    Google Scholar 

  • Faust J, Preiss A, Shreiber K, Ripperger H (1983) On the “normalizing” factor for the tomato mutant Choronerva-XIV: synthesis of the proline analogue of the phytosiderophore nicotianamine. Tetrahedron 39: 1593–1596

    Google Scholar 

  • Faust J, Schreiber K, Ripperger H (1984) Der “Normalisierungsfaktor” für die Tomatenmutante Chloronerva: ein einfacher Zugang zum “Aldehydbaustein” der Nicotianaminesynthese. Z Chem 24: 330–331

    Google Scholar 

  • Fushiya S, Nakatsuyama S, Sato Y, Nozoe S (1981a) Synthesis of nicotianamine and related compound, derivatives of azetidine-2-carboxylic acid. Heterocycle 15: 819–822

    Google Scholar 

  • Fushiya S, Sato Y, Nakatsuyama S, Kanuma N, Nozoe S (1981b) Synthesis of avenic acid A and 2′-deoxymugineic acid, amino acids possessing an iron chelating activity. Chem Lett: 909–912

  • Fushiya S, Maeda K, Funayama T, Nozoe S (1988a) 4-N-Hydroxy-L-2,4-diaminobutyric acid. A strong inhibitor of glutamine synthetase. J Med Chem 31: 480–483

    PubMed  Google Scholar 

  • Fushiya S, Watari F, Tashiro T, Kuzano G, Nozoe S (1988b) A new acidic amino acid from a basidiomycetes, lactarius piperatus. Chem Pharm Bull 36: 1366–1370

    Google Scholar 

  • Gao Y, Lane-Bell P, Vederas JC (1998) Stereoselective synthesis of meso-2,6-diaminopimelic acid and its selectively protected derivatives. J Org Chem 63: 2133–2143

    Google Scholar 

  • Garvey DS, May PD, Nadzan AM (1990) 3,4-Disubstitutedγ-lactam rings as conformationally constrained mimics of peptide derivatives containing aspartic acid or norleucine. J Org Chem 55: 936–940

    Google Scholar 

  • Genêt J-P, Thorimbert S, Touzin A-M (1993) Palladium(0) catalyzed amination with N,O-bis-ter-Boc hydroxylamine. Synthesis of (+)-N6-hydroxylysine. Tetrahedron Lett 34: 1159–1162

    Google Scholar 

  • Geze M, Blanchard P, Fourrey JL, Robert-Gero M (1983) Synthesis of sinefungin and its C-6′ epimer. J Am Chem Soc 105: 7638–7640

    Google Scholar 

  • Giorgianni F, Beranova S, Wesdemiotis C, Viola RE (1995) Elimination of the sensitivity of L-aspartase to active-site-directed inactivation without alteration of catalytic activity. Biochemistry 34: 3529–3535

    PubMed  Google Scholar 

  • Girard A, Greek C, Genêt JP (1998) Rapid syntheses of 3-amino-5-hydroxymethyl-γ-lactones from L-allylglycine. Tetrahedron Lett 39: 4259–4260

    Google Scholar 

  • Hanessian S, Yang R-J (1996) The asymmetric synthesis of allylglycine and other unnaturalα-amino acids via zinc-mediated allylation of oximes in aqueous media. Tetrahedron Lett 37: 5273–5276

    Google Scholar 

  • Hoffmann MG, Zeiss H-J (1992) A novel and convenient route to L-homoserine lactones and L-phosphinothricin from L-aspartic acid. Tetrahedron Lett 33: 2669–2672

    Google Scholar 

  • Itokawa H, Kondo K, Hitotsuyanagi Y, Isomura M, Takeya K (1993) Studies on RA derivatives. V. Synthesis and antitumor activity of Ala2-modified RA-VII derivatives. Chem Pharm Bull 41: 1402–1410

    PubMed  Google Scholar 

  • Jungheim LN, Boyd DB, Indelicato JM, Pasini CE, Preston D, Alborn WE (1991) Synthesis, hydrolysis rates, supercomputer modeling, and antibacterial activity of bicyclic tetrahydropyridazinones. J Med Chem 34: 1732–1739

    PubMed  Google Scholar 

  • Katagiri N, Okada M, Kaneko C, Furuya T (1996) Synthesis of chiral cyclic nitrones via a nitrosoketene intermediate and their use for the complete EPC synthesis of nonproteinogenic amino acids. Tetrahedron Lett 37: 1801–1804

    Google Scholar 

  • Kazmaier U (1996) Synthesis ofγ,δ-unsaturated amino acids via ester enolate Claisen rearrangement of chelated allylic esters. Amino Acids 11: 283–299

    Google Scholar 

  • Keith DD, Tortora JA, Ineichen K, Leimgruber W (1975) The total synthesis of rhizobitoxine. Tetrahedron 31: 2633–2636

    Google Scholar 

  • Keith DD, Tortora JA, Yang R (1978) Synthesis of L-2-amino-4-methoxy-trans-but-3-enoic acid. J Org Chem 43: 3711–3713

    Google Scholar 

  • Knapp S, Hale JJ, Bastos M, Molina A, Chen KY (1992) Synthesis of hypusine and other polyamines using dibenzyltriazones for amino protection. J Org Chem 57: 6239–6256

    Google Scholar 

  • Koch T, Buchardt O (1993) Synthesis of L-(+)-selenomethionine. Synthesis: 1065–1067

  • Kokotos G, Padron JM, Martin T, Gibbons WA, Martin VS (1998) A general approach to the asymmetric synthesis of unsaturated lipidic (α-amino acids. The first synthesis ofα-amino arachidonic acid. J Org Chem (in press)

  • Matsuura F, Hamada Y, Shioiri T (1994a) Total syntheses of phytosiderophores, 3-epihydroxymugineic acid, distichonic acid A, and 2′-hydroxynicotianamine. Tetrahedron 50:265–274

    Google Scholar 

  • Matsuura F, Hamada Y, Shioiri T (1994b) Total synthesis of 2′-deoxymugineic acid and nicotianamine. Tetrahedron 50: 9457–9470

    Google Scholar 

  • Meffre (1998) In different reaction conditions, this strategy may lead to the formation of vinylsulfide in good yield. Synthesis (submitted to publication)

  • Meffre P, Lhermitte H, Vo-Quang L, Vo-Quang Y, Le Goffic F (1991) A new class of unusualα-amino acids:α-amino acidβ,γ-enol thioethers. Tetrahedron Lett 32: 4717–4720

    Google Scholar 

  • Meffre P, Durand P, Le Goffic F (1995) Straightforward synthesis of optically pure methyl (S)-2-phthalimido-4-oxobutanoate. Synthesis: 1111–1114

  • Meffre P, Durand P, Le Goffic F (1999) Methyl (S)-2-phthalimido-4-oxobutanoate. Org Synth 76 (in press)

  • Metzler DE (1977) Biochemistry: the chemical reactions of living cells. Academic Press Inc, New York, p 824

    Google Scholar 

  • Mock GA, Moffatt JG (1982) An approach to the total synthesis of sinefungin. Nucleic Acid Res 10: 6223–6234

    PubMed  Google Scholar 

  • Myers AG, Gleason JL, Yoon T, Kung DW (1997) Highly practical methodology for the synthesis of D- and L-α-amino acids, N-protectedα-amino acids, and N-methyl-α-amino acids. J Am Chem Soc 119: 656–673

    Google Scholar 

  • Neuberger A, Tait GH (1962) Synthesis of L-asparticβ-semialdehyde. J Chem Soc: 3963–3968

  • Ohfune Y, Nomoto K (1981) Synthesis of (+)-avenic acid A. Chem Lett: 827–828

  • Ohfune Y, Tomita M, Nomoto K (1981) Total synthesis of 2′-deoxyugineic acid, the metal chelator excreted from wheat root. J Am Chem Soc 103: 2409–2410

    Google Scholar 

  • Oida F, Ota N, Mino Y, Nomoto K, Sugiura Y (1989) Stereospecific iron uptake mediated by phytosiderophore in gramineous plants. J Am Chem Soc 111: 3436–3437

    Google Scholar 

  • Ornstein PL, Melikian A, Martinelli MJ (1994) Intramolecular Diels - Alder route to 6-oxodecahydroisoquinoline-3-carboxylates: intermediates for the synthesis of conform ationally constrained excitatory amino acid antagonists. Tetrahedron Lett 35: 5759–5762

    Google Scholar 

  • Pellegrini M, Weitz IS, Chorev M, Mierke DF (1997) A trisubstituted 1,4-diazepine-3-one-based dipeptidomimetic: conformational characterization by NMR and computer simulation. J Am Chem Soc 119: 2430–2436

    Google Scholar 

  • Perish JW (1992) The facile synthesis of 2-(fluorenylmethoxycarbonylamino)-4-(O′, O″-dim ethyl phosphono) -L-butanoic acid {Fmoc-Abu(PO3Me2)-OH}. Synlett: 595–596

  • Perish JW (1994) Efficient Fmoc/solid-phase synthesis of Abu(P)-containing peptides using Fmoc-Abu(PO3Me2)-OH. Int J Peptide Protein Res 44: 288–294

    Google Scholar 

  • Ramalingam K, Woodward RW (1988) Synthesis of stereospecific deuterium-labeled homoserines and homoserine lactones. J Org Chem 53: 1900–1903

    Google Scholar 

  • Ramsamy K, Olsen RK, Emery T (1982) Synthesis of N-t-Boc-L-α-aminoadipic acid l-t-butyl 6-ethyl ester from L-aspartic acid: a new route to L-α-aminoadipic acid. Synthesis: 42–43

  • Richards A, McCague R (1997) The impact of chiral technology on the pharmaceutical industry. Chem Ind: 422–425

  • Ripperger H (1988) Synthesis of 3,4-seconicotianamine. J Prakt Chem 330: 470–472

    Google Scholar 

  • Robl JA, Karanewsky DS, Asaad MM (1995) Synthesis of benzo-fused, 7,5- and 7,6-fused azepinones as conformationally restricted dipeptide mimetics. Tetrahedron Lett 36: 1593–1596

    Google Scholar 

  • Schindler JF, Viola RE (1994) Mechanism-based inactivation of L-aspartase fromEscherichia coli. Biochemistry 33: 9365–9370

    PubMed  Google Scholar 

  • Shioiri T, Irako N, Sakakibari S, Matsuura F, Hamada Y (1997) A new efficient synthesis of nicotianamine and 2′-deoxymugineic acid. Heterocycles 44: 519–530

    Google Scholar 

  • Shono T, Matsumura Y, Tsubata K, Sugihara Y, Yamane S-I, Kanazawa T, Aoki T (1982) Electroorganic chemistry. 60. Electroorganic synthesis of enamides and enecarbamates and their utilization in organic synthesis. J Am Chem Soc 104: 6697–6703

    Google Scholar 

  • Stockman RA, Szeto P, Thompson SHJ, Hadley MS, Lathbury DC, Gallagher T (1996) Synthesis of functionalised azabicycles via a regiospecific intramolecular aldol reaction. Synlett: 853–855

  • Subasinghe NL, Bontems RJ, McIntee E, Mishra RK, Johnson RL (1993) Bicyclic thiazolidine lactam peptidomimetics of the dopamine receptor modulating peptide Pro-Leu-Gly-NH,. J Med Chem 36: 2356–2361

    PubMed  Google Scholar 

  • Svete J, Stanovnic B, Tisler M (1994) The synthesis of azatryptophane derivatives. J Heterocyclic Chem 31: 1259–1266

    Google Scholar 

  • Szeto P, Lathbury DC, Gallagher T (1995) Heterocyclic ketones as pre-formed building blocks. Synthesis of (-)-slaframine. Tetrahedron Lett 36: 6957–6960

    Google Scholar 

  • Tong G, Perich JW, Johns RB (1990) Synthesis of Leu-Abu(P)and Glu-Abu(P)-Leu. Isosteres of Ser(P)-Peptides. Tetrahedron Lett 31: 3759–3762

    Google Scholar 

  • Tong G, Perich JW, Johns RB (1992) The improved synthesis of Boc-Abu(PO3Me2)-OH and its use for the facile synthesis of Glu-Abu(P)-Leu. Aust J Chem 45: 1225–1240

    Google Scholar 

  • Toujas JL, Jost E, Vaultier M (1997) Synthesis of homochiral N-Boc-β-aminoaldehydes from N-Boc-β-aminonitriles. Bull Soc Chim Fr 134: 713–717

    Google Scholar 

  • Townsend CA, Reeve AM, Salituro GM (1988) Stereochemical fate of (2S, 4R)- and (2S, 4S)-[4-2H] methionine in norcardicin A biosynthesis. J Chem Soc Chem Com: 1579–1581

  • Tudor DW, Lewis T, Robins DJ (1993) Synthesis of the trifluoroacetate salt of aspartic acidβ-semialdehyde, an intermediate in the biosynthesis of L-lysine, L-threonine, and L-methionine. Synthesis: 1061–1062

  • Uzar HC (1991) Improved synthesis of L-homoserine derivatives from L-aspartic acid. Synthesis: 526–528

  • Valerio RM, Alewood PF, Johns RB (1988) Synthesis of optically active 2-tert-butyloxycarbonylamino)-4-dialkoxyphosphorylbutanoate protected isosteres of o-phosphoserine for peptide synthesis. Synthesis: 786–789

  • Venkatraman S, Roon RJ, Schulte MK, Koerner JF, Johnson RL (1994) Synthesis of oxadiazolidinedione derivatives as quisqualic acid analogues and their evaluation at a quisqualate-sensitized site in the rat hippocampus. J Med Chem 37: 3939–3946

    PubMed  Google Scholar 

  • Walsh C (1982) Suicide substrate: mechanism-based enzyme inactivators. Tetrahedron 38: 871–909

    Google Scholar 

  • Weinkam RJ, Jorgensen EC (1971) Free radical analogs of histidine. J Am Chem Soc 93: 7028–7033

    PubMed  Google Scholar 

  • Weitz IS, Pellegrini M, Mierke DF, Chorev M (1997) Synthesis of a trisubstituted 1,4diazepine-3-one-based dipeptidomimetic as a novel molecular scaffold. J Org Chem 62: 2527–2534

    PubMed  Google Scholar 

  • Werner RM, Shokek O, Davis JT (1997) Preparation of 4-oxo-L-norvaline via diazomethane homologation ofβ-aspartyl semialdehyde. J Org Chem 62: 8243–8246

    PubMed  Google Scholar 

  • Wernic D, DiMaio J, Adams J (1989) Enantiospecific synthesis of L-α-aminosuberic acid. Synthetic applications in preparation of atrial natriuretic factor analogues. J Org Chem 54: 4224–4228

    Google Scholar 

  • Weygand F, Fritz H (1965) Über N-TFA-Asparaginsäure-Derivate. Chem Ber 98: 72–82

    Google Scholar 

  • Williams RM (1989) Synthesis of optically activeα-amino acids. Pergamon Press, Oxford

    Google Scholar 

  • Williams RM, Liu J (1998) Asymmetric synthesis of differentially protected 2,7-diaminosuberic acid, a ring closure methatesis approach. J Org Chem 63: 2130–2132

    Google Scholar 

  • Winkler D, Burger K (1996) Synthesis of enantiomerically pure D- and L-Armentomycin and its difluoro analogues from aspartic acid. Synthesis: 1419–1421

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to RV.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meffre, P.R. Syntheses of optically active 2-amino-4-oxobutyric acid and N,O-protected derivatives. Amino Acids 16, 251–272 (1999). https://doi.org/10.1007/BF01388171

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01388171

Keywords

Navigation