Skip to main content
Log in

Large deformation in filled networks of different architecture and its interpretation in terms of the van der Waals network model

  • Polymer Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The first quasi-static stretch of the two limiting systems of filler loaded rubber have been investigated. One of them is found by filler to matrix contacts only, the other by crosslinking permanently the matrix. In this case filler-matrix contacts are made by adhesion. The experimental results were described in terms of an extended van der Waals approach. It is illuminated that different filler to matrix contact (permanent bonds or adhesion) lead to different deformation mechanism, substantially affecting the “reinforcement”. Moreover, filler induced local “field-modifications” due to the boundary value problem can be understood with the Einstein-Smallwood approach independent of the kind of the filler to matrix contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Treloar LRG (1975) The Physics of Rubber-elasticity, 3rd Ed, Clarendon

  2. Flory PJ (1953) Principles of Polymer Chemistry, Cornell University Press

  3. Kilian H-G (1981) Polymer 22:209

    Google Scholar 

  4. Kilian H-G (1982) Coll & Polym Sci 260:895

    Google Scholar 

  5. Kilian H-G (1985) Coll & Polym Sci 263:30

    Google Scholar 

  6. Vilgis Th, Kilian H-G (1984) Polymer 25:71

    Google Scholar 

  7. Kilian H-G (1986) Gummi, Faser-Kunststoffe 10:548

    Google Scholar 

  8. Einstein A (1906) Ann Phys 19:289; (1911) Ann Phys 34:581

    Google Scholar 

  9. Smallwood HM (1944) J Appl Phys 15:758

    Google Scholar 

  10. Wolff S (1977) Kautschuk u Gummi-Kunststoffe 30:516

    Google Scholar 

  11. Degussa Patent No P 25 36 674

  12. Wolff S (1985) Die Rolle von Kautschuk/Kieselsäure-Bindungen bei der Verstärkung, lères Journées Franco-Allemandes sur le Caoutchouc, Le Bischenberg

  13. Mullins L (1956) J Polym Sci 19:225

    Google Scholar 

  14. Mullins L (1956) J Polym Sci 19:237

    Google Scholar 

  15. Bristow GM, Moore CG, Russel RM (1965) J Polym Sci 3:2893

    Google Scholar 

  16. Hummel K, Scheele W, Hillmer KH (1961) Kautschuk u Gummi-Kunststoffe 14:171

    Google Scholar 

  17. Scheele W (1962) Kautschuk u Gummi-Kunststoffe 15:482

    Google Scholar 

  18. Kilian H-G (1984) Coll & Polym Sci 262:15

    Google Scholar 

  19. Killmann E, Maier H, Kaniut P, Gütling N (1985) Coll Surf 15:261

    Google Scholar 

  20. Killmann E, Bergmann M (1985) Coll & Polym Sci 263:381; (1985) Coll & Polym Sci 263:372

    Google Scholar 

  21. Cohen Stuart MA, Fleer GJ, Bisterbosch BH (1982) J Coll Interf Sci 90:321

    Google Scholar 

  22. Kilian H-G, Unseld K, Jaeger E, Müller J, Jungnickel B (1985) Coll & Polym Sci 263:607

    Google Scholar 

  23. Enderle HF, Kilian H-G, Heise B, Mayer J, Hespe H (1986) Coll & Polym Sci 264:305

    Google Scholar 

  24. Kilian H-G, Enderle HF, Unseld K (1986) Coll & Polym Sci 264:866

    Google Scholar 

  25. Kraus G (1971) Adv Polym Sci 11:155

    Google Scholar 

  26. Rigbi Z (1980) Adv Polym Sci 36:21

    Google Scholar 

  27. Bueche F (1960) J Appl Polym Sci 4:107

    Google Scholar 

  28. Kilian H-G (1986) Kautschuk Gummi, in press

  29. Mooney M (1948) J Appl Phys 19:434

    Google Scholar 

  30. Rivlin RS (1948) Philos Trans R Soc London, Ser A 240:459

    Google Scholar 

  31. Green AG, Atkins JG (1970) Large Elastic Deformations, Clarendon, Oxford

    Google Scholar 

  32. Kilian H-G, Vilgis Th (1984) Coll & Polym Sci 262:15

    Google Scholar 

  33. Flory PJ (1947) J Chem Phys 15:3976

    Google Scholar 

  34. Holl B, Kilian H-G (19) in preparation

  35. Holl B, Kilian H-G, Yeh GSY (1985) Coll & Polym Sci 263:313

    Google Scholar 

  36. Graessley WW (1982) Adv Polym Sci 46:67

    Google Scholar 

  37. Oppermann W, Rehage G (1981) Coll & Polym Sci 259:117

    Google Scholar 

  38. Langley LR (1968) Macromolecules 1:348

    Google Scholar 

  39. Langley LR, Polman KE (1974) J Polym Sci, Phys Ed 12:1023

    Google Scholar 

  40. Kuhn W, Grün F (1942) Koll Zeitschrift 101:248

    Google Scholar 

  41. Hermans JJ (1947) Trans Faraday Soc 56:722

    Google Scholar 

  42. Edwards SF (1977) Br Polym J 9:140

    Google Scholar 

  43. Guth E, Gold O (1938) Phys Rev 53:322

    Google Scholar 

  44. Gessler AM (1969) Rubbere Aga 121:54

    Google Scholar 

  45. Blythe AR (1979) Electrical Properties of Polymers, Cambridge Univesity Press

  46. Vilgis Th, Kilian H-G (1986) Coll & Polym Sci 264:137

    Google Scholar 

  47. Kilian H-G, Mayer J (19) in preparation

  48. Hummel K, Schlüter G (1961) Kautschuk Gummi 14:269

    Google Scholar 

  49. Hummel K (1962) Koll Z Z Polym 182:104

    Google Scholar 

  50. Kilian H-G, Schenk H (1987) in preparation

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kilian, H.G., Schenk, H. & Wolff, S. Large deformation in filled networks of different architecture and its interpretation in terms of the van der Waals network model. Colloid & Polymer Sci 265, 410–423 (1987). https://doi.org/10.1007/BF01412219

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01412219

Key words

Navigation