Skip to main content
Log in

Solute retention in reversed-phase chromatography as a function of stationary phase properties: Effect of n-alkyl chain length and ligand density

  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

Two series of bonded phases were synthesized employing LiChrospher Si 100, 10 μm and n-alkyldimethylmonochlorosilanes as silanizing reagents. In series A the n-alkyl chain length, n, of the bonded phase was varied between 1 and 20 at a constant ligand density of 3.5±0.2μmol·m−2. In series B the ligand density, d, was gradually changed from 0 to 4.1μmol·m−2 on the C1, C4, C6, C8 and C18 bonded phases, respectively.

The capacity factors of benzoic acid esters and anilines as solutes were found to increase linearly with the n-alkyl chain length of packings at constant eluent composition (series A) up to a so-called critical chain length, ncrit, where the capacity factor remained constant. ncrit was in the range from 11 to 14. The same pattern was observed when plotting the solute capacity factor against the ligand density of the packing at constant n and constant eluent composition (series B). The critical ligand density, αcrit, varied between 2.3 and 3.2 μmol·m−2 depending on n and the solute. Furthermore, solute retention was slightly higher on RP packings with an even number of carbon atoms in the alkyl chain than on those with an odd number.

These findings are consistent with the results of Berendsen and de Galan (J. Chromatogr., 196, 21 (1980)), Dill (J. Phys. Chem., 91, 1980 (1987)) and Simpson and Lau (to be published). The observed phenomena reflect the dynamic structure of RP silicas which are related to the mobility of solvated n-alkyl chains. Due to the lack of a precise conformational analysis of the surface of RP silicas, a semiquantitative model was applied to interprete the described dependencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. R. Melander, C. Horváth, in:C. Horváth (ed.), High Performance Liquid Chromatography — Advances and Perspectives, Vol. 2. Academic Press, New York 1980, p. 113.

    Google Scholar 

  2. M. T. W. Hearn, inC. Horváth (ed.), High Performance Liquid Chromatography — Advances and Perspectives, Vol. 3, Academic Press, New York 1980, p. 87.

    Google Scholar 

  3. K. Unger, B. Anspach, R. Janzen, G. Jilge, K. D. Lork, in:C. Horváth (ed.) High Performance Liquid Chromatography — Advances and Perspectives, Vol. 5, Academic Press, New York, to be published.

  4. H. Engelhardt, H. Müller, Chromatographia,19, 77 (1984).

    Google Scholar 

  5. J. Köhler, D. B. Chase, R. D. Farlee, A. J. Vega, J. J. Kirkland, J. Chromatogr.,352, 275 (1986).

    Google Scholar 

  6. M. L. Hair, Infrared Spectroscopy in Surface Chemistry, Marcel Dekker, New York 1967.

    Google Scholar 

  7. G. E. Maciel, D. W. Sindorf, V. J. Batushka, J. Chromatogr.,205, 438 (1981).

    Google Scholar 

  8. E. Bayer, K. Albert, J. Reiners, M. Nieder, D. Müller, J. Chromatogr.,264, 197 (1983).

    Google Scholar 

  9. D. W. Sindorf, G. E. Maciel, J. Amer. Chem. Soc.,105, 3767 (1983).

    Google Scholar 

  10. R. K. Gilpin, M. E. Gangoda, Anal. Chem.,56, 1470 (1984).

    Google Scholar 

  11. E. Bayer, A. Paulus, B. Peters, G. Laupp, J. Reiners, K. Albert, J. Chromatogr.,364, 25 (1986).

    Google Scholar 

  12. D. Morel, J. Serpinet, 12th Internat. Symposium on Column Liquid Chromatography, Washington, D.C., USA, June 1988.

  13. D. Farin, D. Avnir, Special Vol. of J. Chromatogr. honoringE. Kováts, 1987.

  14. K. Karch, I. Sebestian, I. Halász, H. Engelhardt, J. Chromatogr.,122, 171 (1976).

    Google Scholar 

  15. H. Hemetsberger, P. Behrensmeyer, J. Henning, H. Ricken, Chromatographia,12, 71 (1979).

    Google Scholar 

  16. H. Hemetsberger, W. Maasfeld, H. Ricken, Chromatographia,9(7), 303 (1976).

    Google Scholar 

  17. P. Roumeliotis, K. K. Unger, J. Chromatogr.,149, 211 (1978).

    Google Scholar 

  18. G. E. Berendsen, L. de Galan, J. Chromatogr.,196, 21 (1980).

    Google Scholar 

  19. G. E. Berendsen, PhD thesis, Delft University, 1980, p. 115.

  20. D. E. Martire, R. E. Boehm, J. Phys. Chem.,87(6), 1045 (1983).

    Google Scholar 

  21. M. Zakaria, Ph. R. Brown, J. Chromatogr.,255, 151 (1983).

    Google Scholar 

  22. A. Tchapla, H. Colin, G. Guiochon, Anal. Chem.,56(4), 621 (1984).

    Google Scholar 

  23. J. N. Kinkel, K. K. Unger, J. Chromatogr.,316, 193 (1984).

    Google Scholar 

  24. M. T. W. Hearn, in “Advances in Chromatography” (J. C. Giddings, P. Brown andJ. Cazes, eds.) Marcel Dekker, New York, Vol. 20 (1982), p. 1.

    Google Scholar 

  25. B. Grego, M. T. W. Hearn, Chromatographia,14, 589 (1981).

    Google Scholar 

  26. M. T. W. Hearn, B. Grego, J. Chromatogr.,218, 497 (1981).

    Google Scholar 

  27. C. Horváth, W. Melander, I. Molnar, J. Chromatogr.,125, 129 (1976).

    Google Scholar 

  28. O. Sinanoğlu, S. Abdulnur, Fed. Proc.,24(2), 12 (1965).

    Google Scholar 

  29. J. H. Knox, A. Pryde, J. Chromatogr.,112, 171 (1975).

    Google Scholar 

  30. R. P. W. Scott, P. Kucera, J. Chromatogr.,142, 213 (1977).

    Google Scholar 

  31. C. H. Lochmüller, D. R. Wilder, J. Chromatogr. Sci.,17, 574 (1979).

    Google Scholar 

  32. R. F. Rekker, The Hydrophobic Fragmental Constant, Elsevier, Amsterdam 1977.

    Google Scholar 

  33. K. A. Dill, J. Phys. Chem.,91, 1980 (1987).

    Google Scholar 

  34. J. Jacobson, J. Frenz, Cs. Horváth, J. Chromatogr.,316, 53 (1984).

    Google Scholar 

  35. R. K. Gilpin, M. E. Gangoda, E. Krishen, J. Chromatogr. Sci.20, 345 (1982).

    Google Scholar 

  36. T. C. Schunk, M. F. Burke, Int. J. Environ. Anal. Chem.,25, 81 (1986).

    Google Scholar 

  37. B. Pfleiderer, K. Albert, E. Bayer, K. D. Lork, K. K. Unger, M. T. W. Hearn, Angew. Chemie, to be published.

  38. G. Jilge, R. Janzen, H. Giesche, K. Unger, J. N. Kinkel, M. T. W. Hearn, J. Chromatogr.,397, 71 (1987).

    Google Scholar 

  39. G. Fóti, C. Martinez, E. sz. Kováts, 12th Internat. Symposium on Column Liquid Chromatography, Washington, D.C., USA, June 1988.

  40. R. K. Gilpin, J. Chromatogr. Sci.,19, 195 (1981).

    Google Scholar 

  41. Y. O. Lau, C. F. Simpson, to be published.

  42. J. Dale, “Stereochemie und Konformationsanalyse”, Verlag Chemie, Weinheim 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lork, K.D., Unger, K.K. Solute retention in reversed-phase chromatography as a function of stationary phase properties: Effect of n-alkyl chain length and ligand density. Chromatographia 26, 115–119 (1988). https://doi.org/10.1007/BF02268134

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02268134

Key Words

Navigation