Skip to main content
Log in

A theoretical model of the electron capture detector

  • Originals
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

This paper reports a theoretical model of the ECD detector. The model presented here can be used to examine the influence of pulse parameters on the current and signal characteristics of the detector. On the basis of this model it was found that a space charge is created in the detector when it is supplied with pulse voltage. Due to the electric potential generated by the space charge, in the time between the pulses the electrons and negative ions move towards the detector electrodes. The ionization current of the detector is the sum of the electron current flowing to the anode under the influence of the supplied pulse voltage and the current flowing under the space charge potential in the time between the pulses. It was also found that the detector signal is the sum of the differences between those two currents caused by introducing the sample molecules to the detector. The model was tested for a detector with different electrode configurations which worked at temperature of 300 K or 573 K and which was supplied with nitrogen or Ar+10% CH4 as the carrier gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Lovelock, A. J. Watson, J. Chromatogr.,158, 123 (1978).

    Google Scholar 

  2. W. E. Wentworth, E. C. M. Chen, J. Chromatogr.,186, 99 (1976).

    Google Scholar 

  3. J. Rosiek, I. Śliwka, J. Lasa, J. Chromatogr.,137, 245 (1977).

    Google Scholar 

  4. W. A. Aue, S. Kapila, J. Chromatogr.,186, 1 (1980).

    Google Scholar 

  5. W. A. Gobby, E. P. Grimsrud, S. W. Warden, Anal. Chem.,52, 473 (1980).

    Google Scholar 

  6. J. Lasa, I. Śliwka, Chromatographia,27, 499 (1989).

    Google Scholar 

  7. J. Lasa, I. Śliwka, B. Drozdowicz, Chromatographia,32, 248 (1991).

    Google Scholar 

  8. I. Śliwka, Time constants of the ECD, (in preparation).

  9. Numerical Recipes,W. H. Press, B. P. Flannery, S. A. Tenkolsky, W. T. Vetlering, Cambridge University Press, Cambridge-New York, New Rochelle, Melbourne-Sydney, (1988).

    Google Scholar 

  10. J. Lasa, I. Śliwka, Anal. Chem., (Warsaw)36, 341 (1991).

    Google Scholar 

  11. J. L. Pack, A. V. Phelps, J. Chem. Phys.,44, 187 (1966).

    Google Scholar 

  12. D. Smith, N. G. Adams, A. Alge, J. Phys. B: At. Mol. Phys.,17, 461 (1984).

    Google Scholar 

  13. A. Alge, A. G. Adams, D. Smith, J. Phys., B: At. Mol. Phys.,17, 3827 (1984).

    Google Scholar 

  14. L. G. Huxley, R. W. Cromton, The Diffusion and Drift of Electrons in Gases, (in Russian), MIR, Moskwa (1977).

    Google Scholar 

  15. E. W. McDaniel, Collision Phenomena in Ionized Gases, John Wiley and Sons, Inc., New York-London-Sydney (1967).

    Google Scholar 

  16. J. D. Cobine, Gaseous Conductors, Dover Publications, Inc., New York (1958).

    Google Scholar 

  17. A. V. Engel, M. Steenbeck, Elektrische Gasenladungen, Ihre Physik und Technik, Berlin, Verlag von Julius Springer (1932).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lasa, J., Drozdowicz, B. & Śliwka, I. A theoretical model of the electron capture detector. Chromatographia 38, 304–312 (1994). https://doi.org/10.1007/BF02269772

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02269772

Key Words

Navigation