Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Scanning Microfluorimetry of Ca-Alginate Immobilized Zymomonas Mobilis

Abstract

Scanning microfluorimetric techniques offer a means for in situ investigation of spatial heterogeneities in biomass density and cell composition in macroscopic, aggregate-cell systems such as immobilized-cell biocatalysts, biofilms, mold pellets and tumors. Much of the analytical power of flow cytometry, with the important addition of spatial resolution, can be brought to bear on the study of these systems. The utility of these techniques is demonstrated for the experimental determination of spatial gradients in biomass density and bio-catalytic activity in Ca-alginate beads containing an entrapped, living bacterium, Zymomonas mobilis ATCC 10988. Using cell RNA content as an indicator of cell growth rate, scanning microfluorimetry data indicates that immobilized cells in a single gel bead can exhibit the fullest possible variation in specific growth rates, from maximal to resting. Thus, clear gradients in biological growth rate within such biocatalysts are quantifiable, with implications for any fully or partially growth associated products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Karel, S.F., Libicki, S.B., and Robertson, C.R. 1985. The immobilization of whole cells: engineering principles. Chem. Eng. Sci. 40:1321–1354.

    Article  CAS  Google Scholar 

  2. Mattiasson, B. 1983. Immobilized cells and organelles. CRC Press, Boca Raton, FL.

    Google Scholar 

  3. Scott, C.D. 1987. Immobilized cells: a review of recent literature. Enz. Microb. Technol. 9:66–73.

    Article  CAS  Google Scholar 

  4. Mattiasson, B., and Hahn-Hägerdal, B. 1982. Microenvironmental effects on metabolic behaviour of immobilized cells: a hypothesis. J. Appl. Microbiol. Biotech. 16:52–55.

    Article  CAS  Google Scholar 

  5. Sernetz, M., Hannibal-Friedrich, O., and Chun, M. 1979. Bestimmung radialer dichtegradienten in oxiran-acrylharzperlen durch mikroin-terferometrie und mikrofluorometrie. Micros. Acta. 81:393–406.

    CAS  Google Scholar 

  6. Pearse, A.G.E. 1980. Histochemistry: theoretical and applied. Churchill Livingstone, Edinburgh.

    Google Scholar 

  7. Shinmyo, A., Kimura, H., and Okada, H. 1982. Physiology of α-amylase production by immobilized Bacillus amyloliquefaciens. Eur. J. Appl. Microbiol. Biotech. 14:7–12.

    Article  CAS  Google Scholar 

  8. Baudet, C., Barbotin, J.-N., and Guespin-Michael, J. 1983. Growth and sporulation of entrapped Bacillus subtilis cells. Appl. Environ. Microbiol. 45:297–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Garde, V.L., Thomasset, B., and Barbotin, J.-N. 1981. Electron microscopic evidence of an immobilized living cell system. Enz. Microb. Technol. 3:216–218.

    Article  Google Scholar 

  10. Dhulster, P., Barbotin, J.-N., and Thomas, D. 1984. Culture and bioconversion use of plasmid-harboring strain of immobilized E. coli. Appl. Microbiol. Biotech. 20:87–93.

    Article  CAS  Google Scholar 

  11. de Taxis du Poët, P., Dhulster, P., Barbotin, J.-N., and Thomas, D. 1986. Plasmid inheritability and biomass production: comparison between free and immobilized cell cultures of Escherichia coli BZ18 (pTG201) without selection pressure. J. Bac. 165:871–877.

    Article  Google Scholar 

  12. Harder, A., and Roels, J.A. 1982. Application of simple structured models in bioengineering. Adv. Biochem. Eng. 21:55–107.

    CAS  Google Scholar 

  13. Brachet, J. 1953. The use of basic dyes and ribonuclease for the cytochemical detection of ribonucleic acid. Quart. J. Micros. Sci. 94:1–10.

    CAS  Google Scholar 

  14. Kurnick, N.B. 1955. Pyronin Y in the methyl-green-pyronin histological stain. Stain Technol. 30:213–230.

    Article  CAS  Google Scholar 

  15. Scott, J.E. 1967. On the mechanism of the methyl green-pyronin stain for nucleic acids. Histochem. 9:30–47.

    Article  CAS  Google Scholar 

  16. Ahlqvist, J. 1972. Methyl green-pyronin staining: effects of fixation; use in routine pathology. Stain Technol. 47:17–22.

    Article  CAS  Google Scholar 

  17. Shapiro, H.M. 1981. Flow cytometric estimation of DNA and RNA content in intact cells stained with hoechst 33342 and pyronin Y. Cytometry 2:143–150.

    Article  CAS  Google Scholar 

  18. Swings, J., and de Ley, J. 1977. The biology of Zymomonas. Bac. Rev. 41:1–46.

    CAS  Google Scholar 

  19. Rogers, P.L., Lee, K.J., Stotnicki, M.L., and Tribe, D.E. 1982. Ethanol production by Zymomonas mobilis. Adv. Biochem. Eng. 23:37–84.

    Google Scholar 

  20. Rogers, P.L., Stotnicki, M.L., Lee, K.J., and Lee, J.H. 1984. Recent developments in the Zymomonas process for ethanol production. CRC Crit. Rev. Biotech. 1:273–288.

    Article  CAS  Google Scholar 

  21. Jöbses, I.M.L., Egberts, G.T.C., van Baalen, A., and Roels, J.A. 1985. Mathematical modelling of growth and substrate conversion of Zymomonas mobilis at 30 and 35°C. Biotech. Bioeng. 27:984–995.

    Article  Google Scholar 

  22. Hanson, R.S., and Phillips, J.A. 1981. Chemical composition, p. 328–364. In: Manual of methods for general bacteriology. P. Gerhardt (Ed.). American Society for Microbiology, Washington, D.C.

    Google Scholar 

  23. Lillie, R.D., and Fullmer, H.M. 1976. Histopathologic Technique and Practical Histochemistry. McGraw-Hill, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monbouquette, H., Ollis, D. Scanning Microfluorimetry of Ca-Alginate Immobilized Zymomonas Mobilis. Nat Biotechnol 6, 1076–1079 (1988). https://doi.org/10.1038/nbt0988-1076

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0988-1076

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing