Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

In vitro transformation of plant protoplasts with Ti-plasmid DNA

Abstract

Genetic engineering requires a procedure for introducing DNA into host cells, followed by integration into the host genome and gene expression. Although several procedures for DNA-medi-ated gene transfer in mammalian cells, yeast and bacteria have been reported, no such methods are yet available for plant cells. The major obstacle to DNA uptake in plant cells is the cell wall, but this can be circumvented by using plant protoplasts, cells freed of their cell walls by enzymatic digestion. However, none of the reports on the uptake of DNA into plant protoplasts1,2 has produced conclusive evidence for the integration of DNA into the host genome, that is, that stable transformation occurs. The tumour-inducing bacterium Agrobacterium tumefaciens, which causes crown gall disease, is a natural system for the introduction of foreign DNA into plants. This bacterium introduces part of its tumour-inducing (Ti) plasmid, called T-DNA, into plant cells, where it becomes integrated into the nuclear DNA of the host3,4 and is transcribed into mRNA5,6. T-DNA encodes tumour-specific enzymes responsible for the formation of amino acid derivatives such as octopine or nopaline7, which the bacterium can use as a sole source of carbon and nitrogen. The transformed cells have also acquired the ability to grow in the absence of phytohormones (autotrophy). An in vitro system for infection of Nicotiana tabacum protoplasts by A. tumefaciens has already been reported8. Transformants are selected by their ability to divide and grow in tissue culture without the addition of plant phytohormones to the synthetic culture medium. Here, we report a reproducible method for the stable transformation of tobacco protoplasts with Ti-plasmid DNA, using a similar selection procedure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lurquin, P. F. Nucleic Acids Res. 6, 3773–3784 (1979).

    Article  CAS  Google Scholar 

  2. Davey, M. R., Cocking, E. C., Freeman, J., Pearce, N. & Tudor, I. Pl. Sci.Lett. 18, 307–313 (1980).

    Article  CAS  Google Scholar 

  3. Chilton, M.-D., Saiki, R. K., Yadav, N., Gordon, M. P. & Quetier, F. Proc. natn. Acad. Sci. U.S.A. 77, 4060–4064 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Willmitzer, L., De Beuckeleer, M., Lemmers, M., Van Montagu, M. & Schell, J. Nature 287, 359–361 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Drummond, M. H., Gordon, M. P., Nester, E. W. & Chilton, M.-D. Nature 269, 535–536 (1977).

    Article  ADS  CAS  Google Scholar 

  6. Ledeboer, A. M. thesis, Univ. Leiden (1978).

  7. Schröder, J., Schröder, G., Huisman, H., Schilperoort, R. A. & Schell, J. FEES Lett. 129, 166–168 (1981).

    Article  Google Scholar 

  8. Márton, L., Wullems, G. J., Molendijk, L. & Schilperoort, R. A. Nature 277, 129–131 (1979).

    Article  ADS  Google Scholar 

  9. Wullems, G. J., Molendijk, L., Ooms, G. & Schilperoort, R. A. Cell 24, 719–727 (1981).

    Article  CAS  Google Scholar 

  10. Ooms, G., Hooykaas, P. J. J., Moolenaar, G. & Schilperoort, R. A. Gene 14, 33–50 (1981).

    Article  CAS  Google Scholar 

  11. Wullems, G. J., Molendijk, L. & Schilperoort, R. A. Theor. appl. Genet. 56, 203–208 (1980).

    Article  CAS  Google Scholar 

  12. Otten, L. A. B.M. & Schilperoort, R. A. Biochim. biophys. Acta 527, 497–500 (1978).

    Article  CAS  Google Scholar 

  13. Heyn, R. F., Hermans, A. K. & Schilperoort, R. A. Pl. Sci. Lett. 2, 73–78 (1974).

    Article  CAS  Google Scholar 

  14. Chilton, M.-D. et al. Cell 11, 263–271 (1977).

    Article  CAS  Google Scholar 

  15. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  16. Thomashow, M. F., Nutter, R., Montoya, A. L., Gordon, M. P. & Nester, E. W. Cell 19, 729–739 (1980).

    Article  CAS  Google Scholar 

  17. Maniatis, T., Jeffrey, A. & Kleid, D. G. Proc. natn. Acad. Sci. U.S.A. 72, 1184–1188 (1975).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krens, F., Molendijk, L., Wullems, G. et al. In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature 296, 72–74 (1982). https://doi.org/10.1038/296072a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/296072a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing