Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transition temperature of excitation–contraction coupling in frog twitch muscle fibres

Abstract

THE mechanism by which depolarisation of the muscle fibre membrane leads to release of stored Ca2+ ions from the sarcoplasmic reticulum, although crucial, is perhaps the least understood stage in excitation–contraction coupling1,2. We report here our investigation of the temperature dependence of this mechanism, using intracellular injection of arsenazo III (refs 3,4), a Ca2+ indicator dye with a fast response time5. We have found that the latency between depolarisation of the fibre and the onset of the rise in intracellular free Ca2+ is proportional to the reciprocal temperature, but that on an Arrhenius plot this relationship shows a change in slope at a temperature which depends upon the Ca2+ concentration in the bathing solution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ebashi, S. A. Rev. Physiol. 38, 293–313 (1976).

    Article  CAS  Google Scholar 

  2. Endo, M. Physiol. Rev. 57, 71–108 (1977).

    Article  CAS  Google Scholar 

  3. Parker, I. in Detection and Measurement of Free Calcium Ions in Cells (eds Ashley C. C. & Campbell A. K.) (Eisevier, Amsterdam, in the press).

  4. Scarpa, A., Tiffert, T. & Brinley, F. J. in Biochemistry of Membrane Transport (eds Semenza G. & Carafoli E.) 552–566 (Springer, Berlin, 1977).

    Book  Google Scholar 

  5. Brown, J. E. et al. Biophys. J. 15, 1155–1160 (1975).

    Article  ADS  CAS  Google Scholar 

  6. Miledi, R., Parker, I. & Schalow, G. Proc. R. Soc. B198, 201–210 (1977).

    ADS  CAS  Google Scholar 

  7. Miledi, R., Parker, I. & Schalow, G. J. Physiol., Lond. 269, 11–13 (1977).

    Google Scholar 

  8. Suarez Kurtz, G. & Parker, I. Nature 270, 746–748 (1977).

    Article  ADS  CAS  Google Scholar 

  9. Miledi, R., Parker, I. & Schalow, G. Nature 268, 750–752 (1977).

    Article  ADS  CAS  Google Scholar 

  10. Gonzalez Serratos, H. J. Physiol., Lond. 212, 777–799 (1971).

    Article  CAS  Google Scholar 

  11. Anderson, C. R., Cull-Candy, S. G. & Miledi, R. Nature 268, 663–665 (1977).

    Article  ADS  CAS  Google Scholar 

  12. Dreyer, F., Muller, K. D., Peper, K. & Sterz, R. Pflügers Arch. Ges. Physiol. 367, 115–122 (1976).

    Article  CAS  Google Scholar 

  13. Fischback, G. D. & Lass, Y. J. Physiol., Lond. 280, 527–536 (1978).

    Article  Google Scholar 

  14. Feltz, A., Large, W. A. & Trautmann, A. J. Physiol., Lond. 269, 109–130 (1977).

    Article  CAS  Google Scholar 

  15. Anderson, C. R., Cull-Candy, S. G. & Miledi, R. J. Physiol., Lond. 282, 219–242 (1978).

    Article  CAS  Google Scholar 

  16. Chapman, D. Q. Rev. Biophys. 8, 185–235 (1975).

    Article  CAS  Google Scholar 

  17. Wilson, G. & Fox, C. F. J. molec. Biol. 55, 49–60 (1971).

    Article  CAS  Google Scholar 

  18. Overath, P. & Trauble, M. Biochemistry 12, 2625–2627 (1973).

    Article  CAS  Google Scholar 

  19. Levy, H. M., Sharon, N. & Koshland, D. E. Proc. natn. Acad. Sci. U.S.A. 45, 785–791 (1959).

    Article  ADS  CAS  Google Scholar 

  20. Dixon, M. & Webb, E. C. Enzymes 2nd edn, 758 (Longmans, London, 1964).

    Google Scholar 

  21. Caputo, C. J. Physiol., Lond. 255, 191–207 (1976).

    Article  CAS  Google Scholar 

  22. Caputo, C. J. Physiol., Lond. 223, 483–505 (1972).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MILEDI, R., PARKER, I. & SCHALOW, G. Transition temperature of excitation–contraction coupling in frog twitch muscle fibres. Nature 280, 326–328 (1979). https://doi.org/10.1038/280326a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/280326a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing